当前位置: 首页 > news >正文

第G2周:人脸图像生成(DCGAN)

🍨 本文为[🔗365天深度学习训练营学习记录博客\n🍦 参考文章:365天深度学习训练营\n🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

一、设置超参数、导入数据 

import os
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets as dset
import torchvision.utils as vutils
from torchvision.utils import save_image
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTMLmanualSeed = 999  # 随机种子
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
torch.use_deterministic_algorithms(True) # Needed for reproducible results# 超参数配置
dataroot   = "D:/GAN-Data"  # 数据路径
batch_size = 128                   # 训练过程中的批次大小
n_epochs   = 5                     # 训练的总轮数
img_size   = 64                    # 图像的尺寸(宽度和高度)
nz         = 100                   # z潜在向量的大小(生成器输入的尺寸)
ngf        = 64                    # 生成器中的特征图大小
ndf        = 64                    # 判别器中的特征图大小
beta1      = 0.5                   # Adam优化器的Beta1超参数
beta2      = 0.2                   # Adam优化器的Beta1超参数
lr         = 0.0002                # 学习率# 创建数据集
dataset = dset.ImageFolder(root=dataroot,transform=transforms.Compose([transforms.Resize(img_size),        # 调整图像大小transforms.CenterCrop(img_size),    # 中心裁剪图像transforms.ToTensor(),                # 将图像转换为张量transforms.Normalize((0.5, 0.5, 0.5), # 标准化图像张量(0.5, 0.5, 0.5)),]))
# 创建数据加载器
dataloader = torch.utils.data.DataLoader(dataset,batch_size=batch_size,  # 批量大小shuffle=True)           # 是否打乱数据集
# 选择要在哪个设备上运行代码
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
print("使用的设备是:",device)
# 绘制一些训练图像
real_batch = next(iter(dataloader))
plt.figure(figsize=(8,8))
plt.axis("off")
plt.title("Training Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:24],padding=2,normalize=True).cpu(),(1,2,0)))

f1c970f54ef84bafbb319b386e9b4a85.png

二、定义模型、可视化 

# 自定义权重初始化函数,作用于netG和netD
def weights_init(m):# 获取当前层的类名classname = m.__class__.__name__# 如果类名中包含'Conv',即当前层是卷积层if classname.find('Conv') != -1:# 使用正态分布初始化权重数据,均值为0,标准差为0.02nn.init.normal_(m.weight.data, 0.0, 0.02)# 如果类名中包含'BatchNorm',即当前层是批归一化层elif classname.find('BatchNorm') != -1:# 使用正态分布初始化权重数据,均值为1,标准差为0.02nn.init.normal_(m.weight.data, 1.0, 0.02)# 使用常数初始化偏置项数据,值为0nn.init.constant_(m.bias.data, 0)'''
定义生成器 Generator
'''class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.main = nn.Sequential(# 输入为Z,经过一个转置卷积层nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),nn.BatchNorm2d(ngf * 8),  # 批归一化层,用于加速收敛和稳定训练过程nn.ReLU(True),  # ReLU激活函数# 输出尺寸:(ngf*8) x 4 x 4nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 4),nn.ReLU(True),# 输出尺寸:(ngf*4) x 8 x 8nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf * 2),nn.ReLU(True),# 输出尺寸:(ngf*2) x 16 x 16nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),nn.BatchNorm2d(ngf),nn.ReLU(True),# 输出尺寸:(ngf) x 32 x 32nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False),nn.Tanh()  # Tanh激活函数# 输出尺寸:3 x 64 x 64)def forward(self, x):return self.main(x)# 创建生成器
netG = Generator().to(device)
# 使用 "weights_init" 函数对所有权重进行随机初始化,
# 平均值(mean)设置为0,标准差(stdev)设置为0.02。
netG.apply(weights_init)
# 打印生成器模型
print(netG)'''
定义判别器 Discriminator
'''class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()# 定义判别器的主要结构,使用Sequential容器将多个层按顺序组合在一起self.main = nn.Sequential(# 输入大小为3 x 64 x 64nn.Conv2d(3, ndf, 4, 2, 1, bias=False),nn.LeakyReLU(0.2, inplace=True),# 输出大小为(ndf) x 32 x 32nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 2),nn.LeakyReLU(0.2, inplace=True),# 输出大小为(ndf*2) x 16 x 16nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 4),nn.LeakyReLU(0.2, inplace=True),# 输出大小为(ndf*4) x 8 x 8nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),nn.BatchNorm2d(ndf * 8),nn.LeakyReLU(0.2, inplace=True),# 输出大小为(ndf*8) x 4 x 4nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),nn.Sigmoid())def forward(self, x):# 将输入通过判别器的主要结构进行前向传播return self.main(x)# 创建判别器对象
netD = Discriminator().to(device)
# 应用 "weights_init" 函数来随机初始化所有权重
# 使用 mean=0, stdev=0.2 的方式进行初始化
netD.apply(weights_init)
# 打印判别器模型
print(netD)# 初始化“BCELoss”损失函数
criterion = nn.BCELoss()
# 创建用于可视化生成器进程的潜在向量批次
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
real_label = 1.
fake_label = 0.
# 为生成器(G)和判别器(D)设置Adam优化器
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, beta2))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, beta2))img_list = []  # 用于存储生成的图像列表
G_losses = []  # 用于存储生成器的损失列表
D_losses = []  # 用于存储判别器的损失列表
iters = 0  # 迭代次数

e548707830e646fd8e48defa581a6bd2.png

三、训练模型 

print("Starting Training Loop...")  # 输出训练开始的提示信息
# 进行多个epoch的训练
for epoch in range(n_epochs):# 对于dataloader中的每个batchfor i, data in enumerate(dataloader, 0):############################# (1) 更新判别器网络:最大化 log(D(x)) + log(1 - D(G(z)))############################## 使用真实图像样本训练netD.zero_grad()  # 清除判别器网络的梯度# 准备真实图像的数据real_cpu = data[0].to(device)b_size = real_cpu.size(0)label = torch.full((b_size,), real_label, dtype=torch.float, device=device)  # 创建一个全是真实标签的张量# 将真实图像样本输入判别器,进行前向传播output = netD(real_cpu).view(-1)# 计算真实图像样本的损失errD_real = criterion(output, label)# 通过反向传播计算判别器的梯度errD_real.backward()D_x = output.mean().item()  # 计算判别器对真实图像样本的输出的平均值## 使用生成图像样本训练# 生成一批潜在向量noise = torch.randn(b_size, nz, 1, 1, device=device)# 使用生成器生成一批假图像样本fake = netG(noise)label.fill_(fake_label)  # 创建一个全是假标签的张量# 将所有生成的图像样本输入判别器,进行前向传播output = netD(fake.detach()).view(-1)# 计算判别器对生成图像样本的损失errD_fake = criterion(output, label)# 通过反向传播计算判别器的梯度errD_fake.backward()D_G_z1 = output.mean().item()  # 计算判别器对生成图像样本的输出的平均值# 计算判别器的总损失,包括真实图像样本和生成图像样本的损失之和errD = errD_real + errD_fake# 更新判别器的参数optimizerD.step()############################# (2) 更新生成器网络:最大化 log(D(G(z)))############################netG.zero_grad()  # 清除生成器网络的梯度label.fill_(real_label)  # 对于生成器成本而言,将假标签视为真实标签# 由于刚刚更新了判别器,再次将所有生成的图像样本输入判别器,进行前向传播output = netD(fake).view(-1)# 根据判别器的输出计算生成器的损失errG = criterion(output, label)# 通过反向传播计算生成器的梯度errG.backward()D_G_z2 = output.mean().item()  # 计算判别器对生成器输出的平均值# 更新生成器的参数optimizerG.step()# 输出训练统计信息if i % 400 == 0:print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'% (epoch, n_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))# 保存损失值以便后续绘图G_losses.append(errG.item())D_losses.append(errD.item())# 通过保存生成器在固定噪声上的输出来检查生成器的性能if (iters % 500 == 0) or ((epoch == n_epochs - 1) and (i == len(dataloader) - 1)):with torch.no_grad():fake = netG(fixed_noise).detach().cpu()img_list.append(vutils.make_grid(fake, padding=2, normalize=True))iters += 1# 可视化
plt.figure(figsize=(10,5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses,label="G")
plt.plot(D_losses,label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()# 创建一个大小为8x8的图形对象
fig = plt.figure(figsize=(8, 8))
# 不显示坐标轴
plt.axis("off")
# 将图像列表img_list中的图像转置并创建一个包含每个图像的单个列表ims
ims = [[plt.imshow(np.transpose(i, (1, 2, 0)), animated=True)] for i in img_list]
# 使用图形对象、图像列表ims以及其他参数创建一个动画对象ani
ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True)
# 将动画以HTML形式呈现
HTML(ani.to_jshtml())# 从数据加载器中获取一批真实图像
real_batch = next(iter(dataloader))
# 绘制真实图像
plt.figure(figsize=(15,15))
plt.subplot(1,2,1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0)))
# 绘制上一个时期生成的假图像
plt.subplot(1,2,2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(img_list[-1],(1,2,0)))
plt.show()

 训练结果:

[Epoch 0/50][Batch 0/36][D loss: 1.446340][G loss: 5.497820][D : 0.496465][G : 0.006384]
[Epoch 1/50][Batch 0/36][D loss: 0.198702][G loss: 32.366798][D : 0.000000][G : 0.000000]
[Epoch 2/50][Batch 0/36][D loss: 0.007939][G loss: 39.840797][D : 0.000000][G : 0.000000]
[Epoch 3/50][Batch 0/36][D loss: 0.008718][G loss: 39.420380][D : 0.000000][G : 0.000000]
[Epoch 4/50][Batch 0/36][D loss: 0.000432][G loss: 39.375351][D : 0.000000][G : 0.000000]
[Epoch 5/50][Batch 0/36][D loss: 0.000377][G loss: 39.141502][D : 0.000000][G : 0.000000]
[Epoch 6/50][Batch 0/36][D loss: 0.000066][G loss: 38.554665][D : 0.000000][G : 0.000000]
[Epoch 7/50][Batch 0/36][D loss: 0.000161][G loss: 37.076347][D : 0.000000][G : 0.000000]
[Epoch 8/50][Batch 0/36][D loss: 0.236551][G loss: 5.515038][D : 0.126019][G : 0.009809]
[Epoch 9/50][Batch 0/36][D loss: 0.774763][G loss: 4.037993][D : 0.041982][G : 0.032798]
[Epoch 10/50][Batch 0/36][D loss: 1.355027][G loss: 7.484296][D : 0.627779][G : 0.001169]
[Epoch 11/50][Batch 0/36][D loss: 1.026440][G loss: 3.390290][D : 0.480961][G : 0.066138]
[Epoch 12/50][Batch 0/36][D loss: 0.698196][G loss: 2.289851][D : 0.117281][G : 0.149754]
[Epoch 13/50][Batch 0/36][D loss: 0.407120][G loss: 3.295501][D : 0.169919][G : 0.056703]
[Epoch 14/50][Batch 0/36][D loss: 0.858621][G loss: 4.627818][D : 0.297173][G : 0.028583]
[Epoch 15/50][Batch 0/36][D loss: 1.068889][G loss: 4.085044][D : 0.314014][G : 0.029605]
[Epoch 16/50][Batch 0/36][D loss: 0.761256][G loss: 1.878336][D : 0.122635][G : 0.189217]
[Epoch 17/50][Batch 0/36][D loss: 0.946410][G loss: 5.986092][D : 0.486197][G : 0.005545]
[Epoch 18/50][Batch 0/36][D loss: 0.607918][G loss: 8.022884][D : 0.355339][G : 0.000997]
[Epoch 19/50][Batch 0/36][D loss: 0.387959][G loss: 5.217168][D : 0.148431][G : 0.012128]
[Epoch 20/50][Batch 0/36][D loss: 0.502083][G loss: 3.828265][D : 0.124887][G : 0.032919]
[Epoch 21/50][Batch 0/36][D loss: 0.341051][G loss: 5.217510][D : 0.129790][G : 0.010647]
[Epoch 22/50][Batch 0/36][D loss: 0.305131][G loss: 3.878963][D : 0.118515][G : 0.034831]
[Epoch 23/50][Batch 0/36][D loss: 0.326738][G loss: 3.092067][D : 0.048084][G : 0.073658]
[Epoch 24/50][Batch 0/36][D loss: 1.001996][G loss: 7.870810][D : 0.531534][G : 0.001848]
[Epoch 25/50][Batch 0/36][D loss: 0.646764][G loss: 5.994369][D : 0.328600][G : 0.005999]
[Epoch 26/50][Batch 0/36][D loss: 1.305306][G loss: 3.512106][D : 0.027197][G : 0.060318]
[Epoch 27/50][Batch 0/36][D loss: 0.230971][G loss: 6.018190][D : 0.160877][G : 0.005384]
[Epoch 28/50][Batch 0/36][D loss: 0.479868][G loss: 2.851458][D : 0.012263][G : 0.132684]
[Epoch 29/50][Batch 0/36][D loss: 1.190969][G loss: 6.840727][D : 0.560059][G : 0.003298]
[Epoch 30/50][Batch 0/36][D loss: 1.005036][G loss: 6.322803][D : 0.486148][G : 0.005413]
[Epoch 31/50][Batch 0/36][D loss: 0.407194][G loss: 5.357150][D : 0.025872][G : 0.012775]
[Epoch 32/50][Batch 0/36][D loss: 0.715868][G loss: 4.764071][D : 0.410440][G : 0.018443]
[Epoch 33/50][Batch 0/36][D loss: 0.525104][G loss: 4.291232][D : 0.187566][G : 0.026254]
[Epoch 34/50][Batch 0/36][D loss: 0.363458][G loss: 4.643357][D : 0.184744][G : 0.021312]
[Epoch 35/50][Batch 0/36][D loss: 0.550998][G loss: 3.245662][D : 0.190560][G : 0.078518]
[Epoch 36/50][Batch 0/36][D loss: 0.686132][G loss: 5.602957][D : 0.362706][G : 0.007369]
[Epoch 37/50][Batch 0/36][D loss: 0.556991][G loss: 3.656791][D : 0.147552][G : 0.046845]
[Epoch 38/50][Batch 0/36][D loss: 0.459933][G loss: 4.163424][D : 0.245844][G : 0.033957]
[Epoch 39/50][Batch 0/36][D loss: 0.232279][G loss: 4.535916][D : 0.114630][G : 0.016447]
[Epoch 40/50][Batch 0/36][D loss: 0.479002][G loss: 5.497972][D : 0.263936][G : 0.012047]
[Epoch 41/50][Batch 0/36][D loss: 0.720815][G loss: 3.263973][D : 0.259178][G : 0.061856]
[Epoch 42/50][Batch 0/36][D loss: 0.703234][G loss: 6.425527][D : 0.400735][G : 0.003400]
[Epoch 43/50][Batch 0/36][D loss: 0.741217][G loss: 2.052215][D : 0.048953][G : 0.209300]
[Epoch 44/50][Batch 0/36][D loss: 0.658782][G loss: 3.800625][D : 0.272119][G : 0.040041]
[Epoch 45/50][Batch 0/36][D loss: 0.402264][G loss: 5.260798][D : 0.185568][G : 0.009509]
[Epoch 46/50][Batch 0/36][D loss: 0.753039][G loss: 4.797507][D : 0.406285][G : 0.022727]
[Epoch 47/50][Batch 0/36][D loss: 0.301918][G loss: 4.467443][D : 0.173592][G : 0.022788]
[Epoch 48/50][Batch 0/36][D loss: 0.638086][G loss: 1.768839][D : 0.072733][G : 0.227529]
[Epoch 49/50][Batch 0/36][D loss: 0.576230][G loss: 2.268032][D : 0.082981][G : 0.151779]

c46f116c90bd47d88d0a6ae2b2857d37.png 314562a5064a467aa98fd81bf10d6287.png

 

相关文章:

第G2周:人脸图像生成(DCGAN)

🍨 本文为[🔗365天深度学习训练营学习记录博客\n🍦 参考文章:365天深度学习训练营\n🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.co…...

【Web】Ctfshow Thinkphp5 非强制路由RCE漏洞

目录 非强制路由RCE漏洞 web579 web604 web605 web606 web607-610 前面审了一些tp3的sql注入,终于到tp5了,要说tp5那最经典的还得是rce 下面介绍非强制路由RCE漏洞 非强制路由RCE漏洞原理 非强制路由相当于开了一个大口子,可以任意调用当前框…...

python3遇到Can‘t connect to HTTPS URL because the SSL module is not available.

远程服务器centos7系统上有minicoda3,觉得太占空间,就把整个文件夹删了,原先的Python3也没了,都要重装。 我自己的步骤:进入管理员模式 1.下载Python3的源码: wget https://www.python.org/ftp/python/3.1…...

QSPI Flash xip取指同时program过程中概率性出现usb播歌时断音

项目场景: USB Audio芯片,代码放到qspi flash中,执行代码时,客户会偶尔保存一些参数,即FPGA验证过程中,每隔10ms向flash info区烧写4个byte(取指过程一直存在,且时隙软件不可控&…...

MySQL聚簇索引和非聚簇索引的区别

前言: 聚簇索引和非聚簇索引是数据库中的两种索引类型,他们在组织和存储数据时有不同的方式。 聚簇索引: 简单理解,就是将数据和索引放在了一起,找到了索引也就找到了数据。对于聚簇索引来说,他的非叶子节点上存储的是…...

【C#】蜗牛爬井问题C#控制台实现

文章目录 一、问题描述二、C#控制台代码 一、问题描述 井深30米,蜗牛在井底,每天爬3米又滑下1米,问第几天爬出来 二、C#控制台代码 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System…...

IP地址的四大类型:动态IP、固定IP、实体IP、虚拟IP的区别与应用

在网络通信中,IP地址是设备在互联网上唯一标识的关键元素。动态IP、固定IP、实体IP和虚拟IP是四种不同类型的IP地址,它们各自具有独特的特点和应用场景。 1. 动态IP地址: 动态IP地址是由Internet Service Provider(ISP&#xff…...

Linux Debian12安装和使用ImageMagick图像处理工具 常见图片png、jpg格式转webp格式

一、ImageMagick简介 ImageMagick是一套功能强大、稳定而且免费的工具集和开发包。可以用来读、写和图像格式转换,可以处理超过100种图像格式,包括流行的TIFF, JPEG, GIF, PNG, PDF以及PhotoCD等格式。对图片的操作,即可以通过命令行进行&am…...

JavaScript二

目录 流程控制 if判断 while循环 do while for循环 forEach for in Map与set iterator 流程控制 if判断 <script>use strictvar age 5;if(age < 3){alert("haha");}else if(age < 5){alert("hi world");}else{alert("hello wor…...

JavaScript系列——正则表达式

文章目录 需求场景正则表达式的定义创建正则表达式通过 / 表示式/ 创建通过构造函数创建 编写一个正则表达式的模式使用简单模式使用特殊字符常用特殊字符列表特殊字符组和范围 正则表达式使用代码演示 常用示例验证手机号码合法性 小结 需求场景 在前端开发领域&#xff0c;在…...

命令行创建Vue项目

Vue项目创建 1. 打开UI界面 在命令行中&#xff0c;执行如下指令&#xff1a; vue ui 2. 打开项目管理器 3. 创建项目 创建项目的过程&#xff0c;需要联网进行&#xff0c;这可能会耗时比较长的时间&#xff0c;请耐心等待。 windows的命令行&#xff0c;容易卡顿&#xff0c…...

01.PostgreSQL基本SELECT语句

1. SQL简介 SQL 是用于访问和处理数据库的标准的计算机语言。 SQL有两个标准:分别是SQL92和SQL99,他们分别代表了92年和99年颁布的SQL标准,我们今天使用的SQL语言依然遵循这些标准。 注意:除了 SQL 标准之外,大部分 SQL 数据库程序都拥有它们自己的私有扩展! 2. SQL分…...

UDP信号多个电脑的信息传输测试、配置指南

最近要做一个东西&#xff0c;关于一个软件上得到的信号&#xff0c;如何通过连接的局域网&#xff0c;将数据传输出去。我没做过相关的东西&#xff0c;但是我想应该和软件连接数据库的过程大致是差不多的&#xff0c;就一个ip和一个端口号啥的。 一.问题思路 多个设备同时连…...

先序+中序还原二叉树【数据结构】

先序中序还原二叉树 题目描述 给定一棵二叉树的先序遍历序列和中序遍历序列&#xff0c;要求计算该二叉树的高度。 输入 输入首先给出正整数N&#xff08;≤50&#xff09;&#xff0c;为树中结点总数。下面两行先后给出先序和中序遍历序列&#xff0c;均是长度为N的不包含重…...

【全网首发】洛谷P2678 [NOIP2015 提高组] 跳石头

Everyday English You don’t become what you want; you become whatyou believe. —Oprah Winfrey 你不是成为你想要的&#xff0c;你成为你所相信的。 洛谷P2678 [NOIP2015 提高组] 跳石头 题目描述 一年一度的“跳石头”比赛又要开始了&#xff01; 这项比赛将在一条笔…...

Gpt指引ubuntu安装java8/11

在Ubuntu系统上安装Java环境通常包括以下几个步骤&#xff1a; 更新软件包索引&#xff1a; 在安装新软件之前&#xff0c;最好先更新Ubuntu的软件包索引。这可以确保你安装的是最新版本的软件包。可以使用以下命令来更新&#xff1a; sudo apt update安装Java&#xff1a; U…...

【MCAL】TC397+EB-tresos之MCU配置实战 - 芯片时钟

本篇文章介绍了在TC397平台使用EB-treso对MCU驱动模块进行配置的实战过程&#xff0c;主要介绍了后续基本每个外设模块都要涉及的芯片时钟部分&#xff0c;帮助读者了解TC397芯片的时钟树结构&#xff0c;在后续计算配置不同外设模块诸如通信速率&#xff0c;定时器周期等&…...

最新AI系统ChatGPT网站H5系统源码,支持AI绘画,GPT语音对话+ChatFile文档对话总结+DALL-E3文生图

一、前言 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作Ch…...

如何在MAC OS中的XCODE下添加 <bits/stdc++.h>

mac上使用的编译器是Clang&#xff0c;但是没有万能头文件bits/stdc.h\&#xff0c;本文介绍如何添加万能头文件 Xcode 版本&#xff1a;15.1 - 打开应用程序-Xcode-右键显示包内容 Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/includ…...

Maven项目提示Ignored pom.xml问题

1 环境 &#xff08;1&#xff09;IDEA开发工具&#xff1a;2022.2.1 &#xff08;2&#xff09;JDK&#xff1a;Java17&#xff08;Spring6要求JDK最低版本是Java17&#xff09; &#xff08;3&#xff09;Spring&#xff1a;6.1.2 &#xff08;4&#xff09;Maven 3.8.8 2 …...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

comfyui 工作流中 图生视频 如何增加视频的长度到5秒

comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗&#xff1f; 在ComfyUI中实现图生视频并延长到5秒&#xff0c;需要结合多个扩展和技巧。以下是完整解决方案&#xff1a; 核心工作流配置&#xff08;24fps下5秒120帧&#xff09; #mermaid-svg-yP…...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接&#xff1a;【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...