Langchain-Chatchat开源库使用的随笔记(一)
笔者最近在研究Langchain-Chatchat,所以本篇作为随笔记进行记录。
最近核心探索的是知识库的使用,其中关于文档如何进行分块的详细,可以参考笔者的另几篇文章:
- 大模型RAG 场景、数据、应用难点与解决(四)
- RAG 分块Chunk技术优劣、技巧、方法汇总(五)
原项目地址:
- Langchain-Chatchat
- WIKI教程(有点简单)
1 Chatchat项目结构
整个结构是server
启动API,然后项目内自行调用API。
API详情可见:http://xxx:7861/docs
,整个代码架构还是蛮适合深入学习
2 Chatchat一些代码学习
2.1 12个分块函数统一使用
截止 20231231 笔者看到chatchat一共有12个分chunk的函数
这12个函数如何使用、大致点评可以参考笔者的另外文章(RAG 分块Chunk技术优劣、技巧、方法汇总(五)):
CharacterTextSplitter
LatexTextSplitter
MarkdownHeaderTextSplitter
MarkdownTextSplitter
NLTKTextSplitter
PythonCodeTextSplitter
RecursiveCharacterTextSplitter
SentenceTransformersTokenTextSplitter
SpacyTextSplitterAliTextSplitter
ChineseRecursiveTextSplitter
ChineseTextSplitter
借用chatchat项目中的test/custom_splitter/test_different_splitter.py
来看看一起调用make_text_splitter
函数:
from langchain import document_loaders
from server.knowledge_base.utils import make_text_splitter# 使用DocumentLoader读取文件
filepath = "knowledge_base/samples/content/test_files/test.txt"
loader = document_loaders.UnstructuredFileLoader(filepath, autodetect_encoding=True)
docs = loader.load()CHUNK_SIZE = 250
OVERLAP_SIZE = 50splitter_name = 'AliTextSplitter'
text_splitter = make_text_splitter(splitter_name, CHUNK_SIZE, OVERLAP_SIZE)
if splitter_name == "MarkdownHeaderTextSplitter":docs = text_splitter.split_text(docs[0].page_content)for doc in docs:if doc.metadata:doc.metadata["source"] = os.path.basename(filepath)
else:docs = text_splitter.split_documents(docs)
for doc in docs:print(doc)
2.2 知识库问答Chat的使用
本节参考chatchat开源项目的tests\api\test_stream_chat_api_thread.py
以及 tests\api\test_stream_chat_api.py
来探索一下知识库问答调用,包括:
- 流式调用
- 单次调用
- 多线程并发调用
2.2.1 流式调用
import requests
import json
import sysapi_base_url = 'http://0.0.0.0:7861'api="/chat/knowledge_base_chat"
url = f"{api_base_url}{api}"headers = {'accept': 'application/json','Content-Type': 'application/json',
}data = {"query": "如何提问以获得高质量答案","knowledge_base_name": "ZWY_V2_m3e-large","history": [{"role": "user","content": "你好"},{"role": "assistant","content": "你好,我是 ChatGLM"}],"stream": True
}
# dump_input(data, api)
response = requests.post(url, headers=headers, json=data, stream=True)
print("\n")
print("=" * 30 + api + " output" + "="*30)
for line in response.iter_content(None, decode_unicode=True):data = json.loads(line)if "answer" in data:print(data["answer"], end="", flush=True)
pprint(data)
assert "docs" in data and len(data["docs"]) > 0
assert response.status_code == 200>>>==============================/chat/knowledge_base_chat output==============================你好!提问以获得高质量答案,以下是一些建议:1. 尽可能清晰明确地表达问题:确保你的问题表述清晰、简洁、明确,以便我能够准确理解你的问题并给出恰当的回答。
2. 提供足够的上下文信息:提供相关的背景信息和上下文,以便我能够更好地理解你的问题,并给出更准确的回答。
3. 使用简洁的语言:尽量使用简单、明了的语言,以便我能够快速理解你的问题。
4. 避免使用缩写和俚语:避免使用缩写和俚语,以便我能够准确理解你的问题。
5. 分步提问:如果问题比较复杂,可以分步提问,这样我可以逐步帮助你解决问题。
6. 检查你的问题:在提问之前,请检查你的问题是否完整、清晰且准确。
7. 提供反馈:如果你对我的回答不满意,请提供反馈,以便我改进我的回答。希望这些建议能帮助你更好地提问,获得高质量的答案。
结构也比较简单,call 知识库问答的URL,然后返回,通过response.iter_content
来进行流式反馈。
2.2.2 正常调用以及处理并发
import requests
import json
import sysapi_base_url = 'http://0.0.0.0:7861'api="/chat/knowledge_base_chat"
url = f"{api_base_url}{api}"headers = {'accept': 'application/json','Content-Type': 'application/json',
}data = {"query": "如何提问以获得高质量答案","knowledge_base_name": "ZWY_V2_m3e-large","history": [{"role": "user","content": "你好"},{"role": "assistant","content": "你好,我是 ChatGLM"}],"stream": True
}# 正常调用并存储结果
result = []
response = requests.post(url, headers=headers, json=data, stream=True)for line in response.iter_content(None, decode_unicode=True):data = json.loads(line)result.append(data)answer = ''.join([r['answer'] for r in result[:-1]]) # 正常的结果
>>> ' 你好,很高兴为您提供帮助。以下是一些提问技巧,可以帮助您获得高质量的答案:\n\n1. 尽可能清晰明确地表达问题:确保您的问题准确、简洁、明确,以便我可以更好地理解您的问题并为您提供最佳答案。\n2. 提供足够的上下文信息:提供相关的背景信息和上下文,以便我更好地了解您的问题,并能够更准确地回答您的问题。\n3. 使用简洁的语言:尽量使用简单、明了的语言,以便我能够更好地理解您的问题。\n4. 避免使用缩写和俚语:尽量使用标准语言,以确保我能够正确理解您的问题。\n5. 分步提问:如果您有一个复杂的问题,可以将其拆分成几个简单的子问题,这样我可以更好地回答每个子问题。\n6. 检查您的拼写和语法:拼写错误和语法错误可能会使我难以理解您的问题,因此请检查您的提问,以确保它们是正确的。\n7. 指定问题类型:如果您需要特定类型的答案,请告诉我,例如数字、列表或步骤等。\n\n希望这些技巧能帮助您获得高质量的答案。如果您有其他问题,请随时问我。'refer_doc = result[-1] # 参考文献
>>> {'docs': ["<span style='color:red'>未找到相关文档,该回答为大模型自身能力解答!</span>"]}
然后来看一下并发:
# 并发调用
def knowledge_chat(api="/chat/knowledge_base_chat"):url = f"{api_base_url}{api}"data = {"query": "如何提问以获得高质量答案","knowledge_base_name": "samples","history": [{"role": "user","content": "你好"},{"role": "assistant","content": "你好,我是 ChatGLM"}],"stream": True}result = []response = requests.post(url, headers=headers, json=data, stream=True)for line in response.iter_content(None, decode_unicode=True):data = json.loads(line)result.append(data)return resultfrom concurrent.futures import ThreadPoolExecutor, as_completed
import timethreads = []
times = []
pool = ThreadPoolExecutor()
start = time.time()
for i in range(10):t = pool.submit(knowledge_chat)threads.append(t)for r in as_completed(threads):end = time.time()times.append(end - start)print("\nResult:\n")pprint(r.result())print("\nTime used:\n")
for x in times:print(f"{x}")
通过concurrent的ThreadPoolExecutor
, as_completed
进行反馈
3 知识库相关实践问题
3.1 .md格式的文件 支持非常差
我们在configs/kb_config.py
可以看到:
# TextSplitter配置项,如果你不明白其中的含义,就不要修改。
text_splitter_dict = {"ChineseRecursiveTextSplitter": {"source": "huggingface", # 选择tiktoken则使用openai的方法"tokenizer_name_or_path": "",},"SpacyTextSplitter": {"source": "huggingface","tokenizer_name_or_path": "gpt2",},"RecursiveCharacterTextSplitter": {"source": "tiktoken","tokenizer_name_or_path": "cl100k_base",},"MarkdownHeaderTextSplitter": {"headers_to_split_on":[("#", "head1"),("##", "head2"),("###", "head3"),("####", "head4"),]},
}# TEXT_SPLITTER 名称
TEXT_SPLITTER_NAME = "ChineseRecursiveTextSplitter"
chatchat看上去创建新知识库的时候,仅支持一个知识库一个TEXT_SPLITTER_NAME
的方法,并不能做到不同的文件,使用不同的切块模型。
所以如果要一个知识库内,不同文件使用不同的切分方式,需要自己改整个结构代码;然后重启项目
同时,chatchat项目对markdown的源文件,支持非常差,我们来看看:
from langchain import document_loaders
from server.knowledge_base.utils import make_text_splitter# 载入
filepath = "matt/智能XXX.md"
loader = document_loaders.UnstructuredFileLoader(filepath,autodetect_encoding=True)
docs = loader.load()# 切分
splitter_name = 'ChineseRecursiveTextSplitter'
text_splitter = make_text_splitter(splitter_name, CHUNK_SIZE, OVERLAP_SIZE)
if splitter_name == "MarkdownHeaderTextSplitter":docs = text_splitter.split_text(docs[0].page_content)for doc in docs:if doc.metadata:doc.metadata["source"] = os.path.basename(filepath)
else:docs = text_splitter.split_documents(docs)
for doc in docs:print(doc)
首先chatchat对.md文件读入使用的是UnstructuredFileLoader
,但是没有加mode="elements"
(参考:LangChain:万能的非结构化文档载入详解(一))
所以,你可以认为,读入后,#
会出现丢失,于是你即使选择了MarkdownHeaderTextSplitter
,也还是无法使用。
目前来看,不建议上传.md
格式的文档,比较好的方法是:
- 文件改成 doc,可以带
#
/##
/###
- 更改
configs/kb_config.py
当中的TEXT_SPLITTER_NAME = "MarkdownHeaderTextSplitter"
相关文章:

Langchain-Chatchat开源库使用的随笔记(一)
笔者最近在研究Langchain-Chatchat,所以本篇作为随笔记进行记录。 最近核心探索的是知识库的使用,其中关于文档如何进行分块的详细,可以参考笔者的另几篇文章: 大模型RAG 场景、数据、应用难点与解决(四)R…...
软件体系架构复习二
呃,前面复习的忘了发了。从后面开始吧 Unit 11--18 复习Tips: 重点在于对概念的理解,概念间关系的理解。 对具体的识别方法,处理方法等根据自己的兴趣做一些了解即可 。 如:关于 软件架构脆弱性的成因 , …...

产品经理学习-策略产品指标
目录: 数据指标概述 通用指标介绍 Web端常用指标 移动端常用指标 如何选择一个合适的数据指标 数据指标概述 指标是衡量目标的一个参数,指一项活动中预期达到的指标、目标等,一般用数据表示,因此又称为数据指标;…...
【c语言】日常刷题☞有趣的题目分享❀❀
︿( ̄︶ ̄)︿hi~~ ヽ( ̄ω ̄( ̄ω ̄〃)ゝ本次刷题发现3个比较有趣的题目,分享给您,希望对您有所帮助,谢谢❀❀~ 目录 1.单词覆盖还原(单词的连续性) …...

LINUX 抓包工具Tcpdump离线安装教程
本次教程基于内网环境无法访问网络使用安装包进行安装抓包工具 1、首先给大家看下一共有6个安装包,依次进行解压,包我就放到csdn上了,需要的可以联系我进行下载 2打包然后传到服务器任意一个目录下,进入到当前目录,然后…...

c语言-string.h库函数初识
目录 前言一、库函数strlen()1.1 strlen()介绍1.2 模拟实现strlen() 二、库函数strcpy()2.1 strcpy()介绍2.2 模拟实现strcpy() 三、库函数strcmp()3.1 strcmp()介绍3.3 模拟实现strcmp() 总结 前言 本篇文章介绍c语言<string.h>头文件中的库函数,包含strlen…...

PyTorch官网demo解读——第一个神经网络(4)
上一篇:PyTorch官网demo解读——第一个神经网络(3)-CSDN博客 上一篇我们聊了手写数字识别神经网络的损失函数和梯度下降算法,这一篇我们来聊聊激活函数。 大佬说激活函数的作用是让神经网络产生非线性,类似人脑神经元…...
TCP发送和接受数据
发送数据 public class sendmessage {public static void main (String[] args) throws IOException {//创建socket对象//在创建的同时会连接服务器,若连接不上,代码会报错Socket socketnew Socket("127.0.0.1",10086);//从连接通道中获取输出流OutputStream ossock…...

SpringBoot快速集成多数据源(自动版)
有些人因为看见所以相信,有些人因为相信所以看见 有目录,不迷路 前期准备实现演示代码地址参考 最近研究了一下多数据源,这篇博客讲的是简单模式,下篇博客预计写自动切换模式 前期准备 本篇博客基于SpringBoot整合MyBatis-plus&a…...

mysql原理--Explain详解
1.概述 一条查询语句在经过 MySQL 查询优化器的各种基于成本和规则的优化会后生成一个所谓的 执行计划 ,这个执行计划展示了接下来具体执行查询的方式,比如多表连接的顺序是什么,对于每个表采用什么访问方法来具体执行查询等等。设计 MySQL 的…...

阶段五-JavaWeb综合练习-学生管理系统
一.项目说明 1.前台 (用户使用) 前端,后端 2.后台 (管理员使用) 前端,后端 3.该项目为后台管理系统 项目开发流程: 1.需求分析 1.1 登录功能 用户访问登录页面输入用户名和密码,并且输入验证码。全部输入正确后点击登录,登录成功跳转主页面;登录…...

DevC++ easyx实现视口编辑--像素绘图板与贴图系统
到了最终成果阶段了,虽然中间有一些代码讲起来没有意思,纯靠debug,1-1解决贴图网格不重合问题,这次是一个分支结束。 想着就是把瓦片贴进大地图里。 延续这几篇帖子,开发时间也从2023年的4月16到了6月2号,80小时基本…...

Visual studio 2010的安装与使用
一、下载及安装 1、下载软件。 百度网盘: 链接:https://pan.baidu.com/s/115RibV7dOI_y8LUGW-94cA?pwd4hrs 提取码:4hrs 2、右键解压下载好的文件。 3、找到cn_visual_2010_……/Setup.hta,双击运行。 4、选择第三个“ Visual…...

Download Monitor Email Lock下载监控器邮件锁插件
打开Download Monitor Email Lock下载监控器邮件锁插件 Download Monitor Email Lock下载监控器邮件锁插件下载监视器的电子邮件锁定扩展允许您要求用户在获得下载访问权限之前填写他们的电子邮件地址。 Download Monitor Email Lock下载监控器邮件锁插件用法 安装扩展程序后…...

在vscode中创建任务编译module源文件
接昨天的文章 [创建并使用自己的C模块(Windows10MSVC)-CSDN博客],觉得每次编译转到命令行下paste命令过于麻烦,于是研究了一下在vscode中创建自动编译任务。 经过尝试,在task.json中增加如下代码: {"…...
element ui级连选择,lazyLoad选择地区
ui文档上直接给了一函数 先试试看效果是什么,加上let id0;不然会报错 props: {lazy: true,lazyLoad (node, resolve) {let id 0;const { level } node;setTimeout(() > {const nodes Array.from({ length: level 1 })//创建一个新数组,数组长度l…...

软件测试基础知识详解
1、黑盒测试、白盒测试、灰盒测试 1.1 黑盒测试 黑盒测试 又叫 功能测试、数据驱动测试 或 基于需求规格说明书的功能测试。该类测试注重于测试软件的功能性需求。 采用这种测试方法,测试工程师把测试对象看作一个黑盒子,完全不考虑程序内部的逻辑结构…...

Linux之进程管理
什么是进程 在linux中每个执行的程序都称为一个进程,每个进程都分配一个ID号(pid进程号)。每个进程都可能以两种方式存在,即前台和后天。前台进程就是用户目前的屏幕上可以进行操作的。后台进程则是实际在操作,但屏幕…...

动画墙纸:将视频、网页、游戏、模拟器变成windows墙纸——Lively Wallpaper
文章目录 前言下载github地址:网盘 关于VideoWebpagesYoutube和流媒体ShadersGIFs游戏和应用程序& more:Performance:多监视器支持:完结 前言 Lively Wallpaper是一款开源的视频壁纸桌面软件,类似 Wallpaper Engine,兼容 Wal…...
187.【2023年华为OD机试真题(C卷)】阿里巴巴找黄金宝箱(I)(贪心算法-JavaPythonC++JS实现)
请到本专栏顶置查阅最新的华为OD机试宝典 点击跳转到本专栏-算法之翼:华为OD机试 🚀你的旅程将在这里启航!本专栏所有题目均包含优质解题思路,高质量解题代码,详细代码讲解,助你深入学习,深度掌握! 文章目录 【2023年华为OD机试真题(C卷)】阿里巴巴找黄金宝箱(…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...

华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...