Python+Torch+FasterCNN网络目标检测识别
程序示例精选
Python+Torch+FasterCNN网络目标检测识别
如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!
前言
这篇博客针对《Python+Torch+FasterCNN网络目标检测识别》编写代码,代码整洁,规则,易读。 学习与应用推荐首选。
运行结果

文章目录
一、所需工具软件
二、使用步骤
1. 主要代码
2. 运行结果
三、在线协助
一、所需工具软件
1. VS2019, Qt
2. C++
二、使用步骤
代码如下(示例):
# coding:utf-8'''import json
import shutildata_root = './coco/'
with open(data_root+"annotations/instances_val2014.json", 'r') as f:annos = json.load(f)
images = annos["images"]
imageid2image = {}
for image in images:imageid2image[image['id']]=image
categories = annos['categories']
cateid2name={}
for cate in categories:cateid2name[cate['id']] = cate['name']
image_final=[]
annos_final=[]
categories_final=[{
"id":1,
"name": "airplane"}]
image_id=1
anno_id=1
imgid2airplane={}
for anno in annos['annotations']:if cateid2name[anno['category_id']] == 'airplane':image_id_t = anno['image_id']if image_id_t not in imgid2airplane:imgid2airplane[image_id_t] = []imgid2airplane[image_id_t].append(anno)
'mini_airplane/' + imagename)image = imageid2image[imgid]image['id'] = image_idimage_final.append(image)for anno in annos:anno["id"] = anno_idanno["image_id"] = image_idanno["category_id"] = 1anno_id+=1annos_final.append(anno)image_id+=1if image_id >=100:break
instance = {"images": image_final,"annotations":annos_final,"categories": categories_final}
with open('mini_airplane_train.json', 'w') as f:json.dump(instance, f, indent=1)
运行结果

三、在线协助:
如需安装运行环境或远程调试,见文章底部个人 QQ 名片,由专业技术人员远程协助!
1)远程安装运行环境,代码调试
2)Visual Studio, Qt, C++, Python编程语言入门指导
3)界面美化
4)软件制作
5)云服务器申请
6)网站制作
当前文章连接:https://blog.csdn.net/alicema1111/article/details/132666851
个人博客主页:https://blog.csdn.net/alicema1111?type=blog
博主所有文章点这里:https://blog.csdn.net/alicema1111?type=blog
博主推荐:
Python人脸识别考勤打卡系统:
https://blog.csdn.net/alicema1111/article/details/133434445
Python果树水果识别:https://blog.csdn.net/alicema1111/article/details/130862842
Python+Yolov8+Deepsort入口人流量统计:https://blog.csdn.net/alicema1111/article/details/130454430
Python+Qt人脸识别门禁管理系统:https://blog.csdn.net/alicema1111/article/details/130353433
Python+Qt指纹录入识别考勤系统:https://blog.csdn.net/alicema1111/article/details/129338432
Python Yolov5火焰烟雾识别源码分享:https://blog.csdn.net/alicema1111/article/details/128420453
Python+Yolov8路面桥梁墙体裂缝识别:https://blog.csdn.net/alicema1111/article/details/133434445
相关文章:
Python+Torch+FasterCNN网络目标检测识别
程序示例精选 PythonTorchFasterCNN网络目标检测识别 如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助! 前言 这篇博客针对《PythonTorchFasterCNN网络目标检测识别》编写代码,代码整洁,规…...
v8 pwn利用合集
文章目录 前置知识JS Object 相关Ignition 相关JIT - turboFan 相关starCTF2019 OOB【越界读写map字段】googleCTF2018 jit【浮点数精度丢失导致越界读写】数字经济线下 Browser【Object::toNumber中callback导致的越界写】前置知识 JS Object 相关 V8 中的对象表示 ==> 基…...
JVM:字节码
JVM:字节码 前言1. JVM概述1.1 JVM vs JDK vs JRE1.1.1 JVM1.1.2 JDK1.1.2.1 常用的JDK8是Oracle JDK 还是 OpenJDK 1.1.3 JRE1.1.4 三者之间的关系与区别 1.2 什么是字节码?采用字节码的好处是什么?1.3 Java 程序从源代码到运行的过程1.4 JVM的生命周期1.5 JVM架…...
常见网络设备及功能详解
网络设备 - 交换机 交换机:距离终端用户最近的设备,用于终端用户接入网络、对数据帧进行交换等。 交换机的功能: 终端设备(PC、服务器等)的网络接入二层交换(Layer 2 Switching) 网络设备 - …...
Python教程(20)——python面向对象编程基本概念
面向对象 类和对象初始化方法属性和方法self关键字继承多态 面向对象(Object-oriented)是一种常用的程序设计思想,它以对象作为程序的基本单元,将数据和操作封装在一起,通过对象之间的交互来实现程序的功能。 在面向对…...
C# Winform教程(一):MD5加密
1、介绍 在C#中,MD5(Message Digest Algorithm 5)是一种常用的哈希函数,用于将任意长度的数据转换为固定长度的哈希值(通常是128位)。MD5广泛用于校验数据完整性、密码存储等领域。 2、示例 创建MD5加密…...
Mongodb使用指定索引删除数据
回顾Mongodb删除语法 db.collection.deleteMany(<filter>,{writeConcern: <document>,collation: <document>,hint: <document|string>} ) 删除语法中,除了指定过滤器外,还可以指定写入策略,字符序和使用的索引。 …...
虾皮怎么选品:虾皮(Shopee)跨境电商业务成功的关键步骤
在虾皮(Shopee)平台上进行跨境电商业务,选品是至关重要的一环。有效的选品策略可以帮助卖家更好地了解市场需求,提高销售业绩和客户满意度。以下是一些成功的选品策略,可以帮助卖家在虾皮平台上取得更好的业务成绩。 先…...
QML —— 使用Qt虚拟键盘示例(附完整源码)
示例效果 使用"虚拟键盘"注意 (例子的Qt版本:5.12.4) 注意一: /* 必须在main.cpp开始处加入如下代码,否则无法使用"虚拟键盘" */ qputenv(“QT_IM_MODULE”,QByteArray(“qtvirtualkeybo…...
Nacos 持久化及集群的搭建【微服务】
文章目录 一、统一配置管理二、微服务配置拉取三、配置热更新四、多环境共享配置五、Nacos 集群搭建1. 集群结构2. 初始化数据库3. 搭建集群 六、Nginx 反向代理七、启动项目测试 一、统一配置管理 案例练习的时候我们只有两个微服务,管理起来非常简单,但…...
win10下vscode+cmake编译C代码操作详解
0 工具准备 1.Visual Studio Code 1.85.1 2.cmake 3.24.01 前言 当我们只有一个.c文件时直接使用vscodeCode Runner插件即可完成编译,如果我们的工程很复杂包含多个.c文件时建议使用cmake来生成对应的make,指导编译器完成编译,否则会提示各…...
网络安全红队常用的攻击方法及路径
一、信息收集 收集的内容包括目标系统的组织架构、IT资产、敏感信息泄露、供应商信息等各个方面,通过对收集的信息进行梳理,定位到安全薄弱点,从而实施下一步的攻击行为。 域名收集 1.备案查询 天眼查爱企查官方ICP备案查询 通过以上三个…...
【基于openGauss2.1.0企业版安装X-Tuner参数调优工具】
【基于openGauss2.1.0企业版安装X-Tuner参数调优工具】 一、前提条件二、安装X-Tuner 2.1.0: 一、前提条件 已安装了openGauss2.1.0企业版 二、安装X-Tuner 2.1.0: 以root用户登录到服务器 安装以下依赖: yum -y groupinstall "Development tools" yum…...
SpringBoot+Vue轻松实现考试管理系统
简介 本系统基于 Spring Boot 搭建的方便易用、高颜值的教学管理平台,提供多租户、权限管理、考试、练习、在线学习等功能。主要功能为在线考试、练习、刷题,在线学习。课程内容支持图文、视频,考试类型支持考试、练习、问卷。 源码下载 网…...
详解Keras:keras.preprocessing.image
keras.preprocessing.image Keras 库中的一个模块,用于处理和增强图像数据,它提供了一些实用的函数,如图像的加载、预处理、增强等。 常用函数 1、load_img 用于加载图像文件,并返回一个 NumPy 数组表示该图像 示例 from ker…...
来瞅瞅Java 11都有啥新特性
第1章:引言 大家好,我是小黑!今天小黑要和咱们聊聊Java 11,这个在Java发展史上占有一席之地的版本。说起Java,咱们都知道,它是一门历史悠久又持续发展的编程语言。Java不仅因其“一次编写,到处…...
Copilot在IDEA中的应用:提升编码效率的得力助手
Copilot在IDEA中的应用:提升编码效率的得力助手 前言: 欢迎来到本篇博客,今天我们将深入探讨 GitHub Copilot 在 IntelliJ IDEA 中的应用。GitHub Copilot 是一款由 GitHub 与 OpenAI 共同开发的人工智能代码生成工具,它能够根据上下文提示…...
【Python】Excel不同sheet另存为不同CSV
我有一个excel,内有不同sheet,现在批量生成不通csv文件,并以sheet名命名,或根据sheet名调整命名。 # 读取新的Excel文件 df pd.read_excel(rD:\itm\data.xlsx, sheet_nameNone)# 遍历每个sheet,将其另存为不同的CSV文…...
软件测试|深入学习 Docker Logs
简介 Docker 是一种流行的容器化技术,它能够帮助用户将应用程序及其依赖项打包成一个可移植的容器。Docker logs 是 Docker 提供的用于管理容器日志的命令,本文将深入学习 Docker logs 的使用和管理,帮助用户更好地监测和解决容器问题。 Do…...
试除法求约数算法总结
知识概览 试除法求一个数的约数的时间复杂度是。 例题展示 题目链接 活动 - AcWing 系统讲解常用算法与数据结构,给出相应代码模板,并会布置、讲解相应的基础算法题目。https://www.acwing.com/problem/content/871/ 题解 用试除法求约数,…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
