当前位置: 首页 > news >正文

十三、K8S之亲和性

亲和性

一、概念

在K8S中,亲和性(Affinity)用来定义Pod与节点关系的概念,亲和性通过指定标签选择器和拓扑域约束来决定 Pod 应该调度到哪些节点上。与污点相反,它主要是尽量往某节点靠。

亲和性是 Kubernetes 中非常有用的调度策略,作用是优化 Pod 的调度策略,以便将 Pod 调度到满足特定条件的节点上,从而实现更高效的资源利用、提高容错性和性能等方面的需求。

亲和性配置主要分为三类:

  • 1、节点亲和性:进行 pod 调度时,优先调度到符合条件的亲和力节点上
  • 2、Pod 亲和性:将与指定 pod 亲和力相匹配的 pod 部署在同一节点。
  • 3、Pod 反亲和性:根据策略尽量部署或不部署到一块
  • 4、服务亲和性:将与同一Service相关联的Pod调度到同一节点上

二、节点亲和性

2.1、介绍

节点亲和性NodeAffinity,用于将Pod调度到具有特定标签或污点的节点上,通过使用节点亲和性规则,您可以控制Pod应该在哪些节点上运行。

配置节点亲和性分为:

  • 硬亲和性(RequiredDuringSchedulingIgnoredDuringExecution),即支持必须部署在指定的节点上,也支持必须不部署在指定的节点上
  • 软亲和性(PreferredDuringSchedulingIgnoredDuringExecution),尽量部署在满足条件的节点上,或尽量不要部署在被匹配的节点上

如果同时配置了硬亲和 和 软亲和,那么先强制要求Pod满足此规则才能被调度。如果没有满足该规则的节点可用,Pod将无法被调度。然后再根据软亲和的权重分来决定。

2.2、匹配类型

节点亲和性是针对节点标签进行匹配,匹配类型支持多种

符号说明
In包含条件,满足则部署在满足条件的节点上
NotIn匹配不在条件中的节点,实现节点反亲和性
Exists只要存在 key 名字就可以,不关心值是什么
DoesNotExist匹配指定 key 名不存在的节点,实现节点反亲和性
Gtvalue 为数值,且节点上的值小于指定的条件 , 配置value > 节点
Ltvalue 为数值,且节点上的值大于指定条件 配置value < 节点
2.3、使用示例
apiVersion: v1
kind: Pod
metadata:name: with-node-affinity
spec:affinity: # 亲和力配置nodeAffinity: # 节点亲和力requiredDuringSchedulingIgnoredDuringExecution: # 节点必须匹配下方配置nodeSelectorTerms: # 选择器- matchExpressions: # 匹配表达式- key: topology.kubernetes.io/zone # 匹配 label 的 keyoperator: In # 匹配方式,只要匹配成功下方的一个 value 即可values:- antarctica-east1 # 匹配的 value1- antarctica-west1 # 匹配的 value2preferredDuringSchedulingIgnoredDuringExecution: # 节点尽量匹配下方配置- weight: 1 # 权重[1,100],按照匹配规则对所有节点累加权重,最终之和会加入优先级评分,优先级越高被调度的可能性越高preference:matchExpressions: # 匹配表达式- key: another-node-label-key # label 的 keyoperator: In # 匹配方式,满足一个即可values:- another-node-label-value # 匹配的 value
#      - weight: 20......containers:- name: with-node-affinityimage: xxx

三、Pod 亲和性

3.1、介绍

Pod亲和性(PodAffinity), 可以在同一节点上调度与Pod相似的其他Pod,或者避免在同一节点上调度。

用法上和节点亲和性差不多,主要由nodeAffinity换成podAntiAffinitynodeSelectorTerms换成labelSelector,匹配类型这些是一样的

3.2、示例
apiVersion: v1
kind: Pod
metadata:name: with-pod-affinity
spec:affinity: # 亲和力配置podAffinity: # pod 亲和力配置requiredDuringSchedulingIgnoredDuringExecution: # 当前 pod 必须匹配到对应条件 pod 所在的 node 上- labelSelector: # 标签选择器matchExpressions: # 匹配表达式- key: security # 匹配的 keyoperator: In # 匹配方式values: # 匹配其中的一个 value- S1topologyKey: topology.kubernetes.io/zonepodAntiAffinity: # pod 反亲和力配置preferredDuringSchedulingIgnoredDuringExecution: # 尽量不要将当前节点部署到匹配下列参数的 pod 所在的 node 上- weight: 100 # 权重podAffinityTerm: # pod 亲和力配置条件labelSelector: # 标签选择器matchExpressions: # 匹配表达式- key: security # 匹配的 keyoperator: In # 匹配的方式values:- S2 # 匹配的 valuetopologyKey: topology.kubernetes.io/zonecontainers:- name: with-pod-affinityimage: xx

四、Pod 反亲和性

pod反亲和性根据策略尽量让Pod之间部署或不部署到一块, 它与Pod亲和性配置的区别只有:podAffinity换成podAntiAffinity

apiVersion: v1
kind: Pod
metadata:name: my-pod
spec:containers:- name: my-containerimage: my-imageaffinity:podAntiAffinity: # pod反亲和性配置requiredDuringSchedulingIgnoredDuringExecution:- labelSelector:matchExpressions:- key: "app"operator: Invalues:- my-apptopologyKey: "kubernetes.io/hostname"

相关文章:

十三、K8S之亲和性

亲和性 一、概念 在K8S中&#xff0c;亲和性&#xff08;Affinity&#xff09;用来定义Pod与节点关系的概念&#xff0c;亲和性通过指定标签选择器和拓扑域约束来决定 Pod 应该调度到哪些节点上。与污点相反&#xff0c;它主要是尽量往某节点靠。 亲和性是 Kubernetes 中非常…...

对于网关的理解-Gateway

因为在使用微服务的时候&#xff0c;会有多端请求。会产生以下问题&#xff1a; 1.客户端需要记住每一个微服务的url 2.主机端口也会直接暴露 3.每一个微服务都需要认证 4.存在跨域问题 所以网关可以解决统一访问、隐藏真实的服务器地址、网关进行统一认证、解决跨域问题、…...

win10 - Snipaste截图工具的使用

win10 - Snipaste截图工具的使用 Step 1&#xff1a;下载 下载链接 提取码&#xff1a;wuv2 Step 2&#xff1a;直接解压可用 找到解压好的目录&#xff0c;并双击exe文件即可 Step 3&#xff1a;设置开机启动 在电脑右下角找到snipaste图标&#xff0c;右键&#xff0c;找…...

Selenium 学习(0.19)——软件测试之基本路径测试法——拓展案例

1、案例 请使用基本路径法为变量year设计测试用例&#xff0c;year的取值范围是1000<year<2001。代码如下&#xff1a; 2、步骤 先画控制流程图 再转化为控制流图&#xff08;标出节点&#xff09; V(G) 总区域数 4 V(G) E - N 2 (边数 - 节点数 2…...

工作记录-------正则表达式---小白也能看懂

什么是正则表达式 正则表达式是一种强大的工具&#xff0c;用于匹配和识别文本模式。 下面是一个基本的介绍&#xff1a; ^ 和 $: 这些是锚定字符&#xff0c;分别匹配字符串的开头和结尾。例如&#xff0c;^Hello匹配以 “Hello” 开头的字符串&#xff0c;end$匹配以 “en…...

C3-1.3.1 无监督学习——异常检测

C3-1.3.1 无监督学习——异常检测 1、举例&#xff1a;异常值检测示例——密度评估法 1.1 举一个例子 这里做的是 查看飞机发动机 异常检测&#xff1a; 左侧&#xff1a;X1 ,X2 … 是 可能会影响发动机状态的特征右侧&#xff1a; Dataset&#xff1a;训练数据集New engine…...

1.4.1机器学习——梯度下降+α学习率大小判定

1.4.1梯度下降 4.1、梯度下降的概念 ※【总结一句话】&#xff1a;系统通过自动的调节参数w和b的值&#xff0c;得到最小的损失函数值J。 如下&#xff1a;是梯度下降的概念图。 我们有一个损失函数 J(w,b)&#xff0c;包含两个参数w和b&#xff08;你可以想象成J(w,b) w*x…...

在IntelliJ IDEA中,.idea文件是什么,可以删除吗

相信有很多小伙伴&#xff0c;在用idea写java代码的时候&#xff0c;创建工程总是会出现.idea文件&#xff0c;该文件也从来没去打开使用过&#xff0c;那么它在我们项目里面&#xff0c;扮演什么角色&#xff0c;到底能不能删除它呢&#xff1f; 1、它是什么&#xff1f;有什么…...

【Spring Cloud】Gateway组件的三种使用方式

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是Java方文山&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的专栏《Spring Cloud》。&#x1f3af;&#x1f3af; &am…...

对象的复制

方式一&#xff1a;sv 的new函数 trans tr1,tr2; malbox.get(tr2); tr1 new tr2;//仅用于浅拷贝&#xff0c;拷贝后tr1,tr2为两个独立的对象方式二&#xff1a;uvm 域的自动化常用函数&#xff1a;copy / clone / 使用前提&#xff1a; 1. 函数都可用于uvm_object类型&…...

基于 Python+Neo4j+医药数据,构建了一个知识图谱的自动问答系统

知识图谱是目前自然语言处理的一个热门方向。目前知识图谱在各个领域全面开花&#xff0c;如教育、医疗、司法、金融等。 本项目立足医药领域&#xff0c;以垂直型医药网站为数据来源&#xff0c;以疾病为核心&#xff0c;构建起一个包含7类规模为4.4万的知识实体&#xff0c;…...

Maven之属性管理

1.属性管理 1.1 属性配置与使用 ①&#xff1a;定义属性 <!--定义自定义属性--> <properties><spring.version>5.2.10.RELEASE</spring.version> </properties>②&#xff1a;引用属性 <dependency><groupId>org.springframewor…...

快乐学Python,数据分析之获取数据方法「公开数据或爬虫」

学习Python数据分析&#xff0c;第一步是先获取数据&#xff0c;为什么说数据获取是数据分析的第一步呢&#xff0c;显而易见&#xff1a;数据分析&#xff0c;得先有数据&#xff0c;才能分析。 作为个人来说&#xff0c;如何获取用于分析的数据集呢&#xff1f; 1、获取现成…...

前端常用的设计模式

设计模式&#xff1a;是一种抽象的编程思想&#xff0c;并不局限于某一特定的编程语言&#xff0c;而是在许多语言之间是相通的&#xff1b;它是软件设计中常见的问题的通用、可反复使用、多少人知晓的一种解决方案或者模板。一般对与从事过面向对象编程的人来说会更熟悉一些。…...

游戏引擎支持脚本编程有啥好处

很多游戏引擎都支持脚本编程。Unity、Unreal Engine、CryEngine等大型游戏引擎都支持使用脚本编写游戏逻辑和功能。脚本编程通常使用C#、Lua或Python等编程语言&#xff0c;并且可以与游戏引擎的API进行交互来控制游戏对象、设置变量、执行行为等。使用脚本编程&#xff0c;游戏…...

react中概念性总结(二)

目录 说说你对react的理解&#xff1f;有哪些特性&#xff1f; 说说Real diff算法是怎么运作的&#xff0c;从tree层到component层到element层分别讲解&#xff1f; 调和阶段setState干了什么&#xff1f; 说说redux的工作流程&#xff1f; 为什么react元素有一个$$type属…...

WPF自定义漂亮顶部工具栏 WPF自定义精致最大化关闭工具栏 wpf导航栏自定义 WPF快速开发工具栏

在WPF应用程序开发中&#xff0c;自定义一个漂亮的顶部工具栏具有多重关键作用&#xff0c;它不仅增强了用户体验&#xff0c;还提升了整体应用的专业性和易用性。以下是对这一功能的详细介绍&#xff1a; 首先&#xff0c;自定义顶部工具栏是用户界面设计的重要组成部分&…...

Transformer 的双向编码器表示 (BERT)

一、说明 本文介绍语言句法中&#xff0c;最可能的单词填空在self-attention的表现形式&#xff0c;以及内部原理的介绍。 二、关于本文概述 在我之前的博客中&#xff0c;我们研究了关于生成式预训练 Transformer 的完整概述&#xff0c;关于生成式预训练 Transformer (GPT) 的…...

关于LwRB环形缓冲区开源库的纯C++版本支持原子操作

1、LwRB环形缓冲区开源库&#xff1a; GitHub - MaJerle/lwrb: Lightweight generic ring buffer manager libraryLightweight generic ring buffer manager library. Contribute to MaJerle/lwrb development by creating an account on GitHub.https://github.com/MaJerle/l…...

微信小程序Canvas画布绘制图片、文字、矩形、(椭)圆、直线

获取CanvasRenderingContext2D 对象 .js onReady() {const query = wx.createSelectorQuery()query.select(#myCanvas).fields({ node: true, size: true }).exec((res) => {const canvas = res[0].nodeconst ctx = canvas.getContext(2d)canvas.width = res[0].width * d…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...