LLM漫谈(二)| QAnything支持任意格式文件或数据库的本地知识库问答系统
一、QAnything介绍
QAnything (Question and Answer based on Anything) 是致力于支持任意格式文件或数据库的本地知识库问答系统,可断网安装使用。
您的任何格式的本地文件都可以往里扔,即可获得准确、快速、靠谱的问答体验。
目前已支持格式: PDF,Word(doc/docx),PPT,Markdown,Eml,TXT,图片(jpg,png等),网页链接,更多格式,敬请期待...
二、特点
-
数据安全,支持全程拔网线安装使用。
-
支持跨语种问答,中英文问答随意切换,无所谓文件是什么语种。
-
支持海量数据问答,两阶段向量排序,解决了大规模数据检索退化的问题,数据越多,效果越好。
-
高性能生产级系统,可直接部署企业应用。
-
易用性,无需繁琐的配置,一键安装部署,拿来就用。
-
支持选择多知识库问答。
三、架构
3.1 为什么是两阶段检索?
知识库数据量大的场景下两阶段优势非常明显,如果只用一阶段embedding检索,随着数据量增大会出现检索退化的问题,如下图中绿线所示,二阶段rerank重排后能实现准确率稳定增长,即数据越多,效果越好。
QAnything使用的检索组件BCEmbedding(https://github.com/netease-youdao/BCEmbedding)有非常强悍的双语和跨语种能力,能消除语义检索里面的中英语言之间的差异,从而实现:
-
强大的双语和跨语种语义表征能力【基于MTEB的语义表征评测指标】。
-
基于LlamaIndex的RAG评测,表现SOTA【基于LlamaIndex的RAG评测指标】。
一阶段检索(embedding)
模型名称 | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | 平均 |
---|---|---|---|---|---|---|---|
bge-base-en-v1.5 | 37.14 | 55.06 | 75.45 | 59.73 | 43.05 | 37.74 | 47.20 |
bge-base-zh-v1.5 | 47.60 | 63.72 | 77.40 | 63.38 | 54.85 | 32.56 | 53.60 |
bge-large-en-v1.5 | 37.15 | 54.09 | 75.00 | 59.24 | 42.68 | 37.32 | 46.82 |
bge-large-zh-v1.5 | 47.54 | 64.73 | 79.14 | 64.19 | 55.88 | 33.26 | 54.21 |
jina-embeddings-v2-base-en | 31.58 | 54.28 | 74.84 | 58.42 | 41.16 | 34.67 | 44.29 |
m3e-base | 46.29 | 63.93 | 71.84 | 64.08 | 52.38 | 37.84 | 53.54 |
m3e-large | 34.85 | 59.74 | 67.69 | 60.07 | 48.99 | 31.62 | 46.78 |
bce-embedding-base_v1 | 57.60 | 65.73 | 74.96 | 69.00 | 57.29 | 38.95 | 59.43 |
-
更详细的评测结果详见Embedding模型指标汇总(https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/embedding_eval_summary.md)。
二阶段检索(rerank)
模型名称 | Reranking | 平均 |
---|---|---|
bge-reranker-base | 57.78 | 57.78 |
bge-reranker-large | 59.69 | 59.69 |
bce-reranker-base_v1 | 60.06 | 60.06 |
-
更详细的评测结果详见Reranker模型指标汇总(https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/reranker_eval_summary.md)
3.2 基于LlamaIndex的RAG评测(embedding and rerank)
NOTE:
-
在WithoutReranker列中,我们的bce-embedding-base_v1模型优于所有其他embedding模型。
-
在固定embedding模型的情况下,我们的bce-reranker-base_v1模型达到了最佳表现。
-
bce-embedding-base_v1和bce-reranker-base_v1的组合是SOTA。
-
如果想单独使用embedding和rerank请参阅:BCEmbedding
3.3 LLM
开源版本QAnything的大模型基于通义千问,并在大量专业问答数据集上进行微调;在千问的基础上大大加强了问答的能力。如果需要商用请遵循千问的license,具体请参阅:通义千问(https://github.com/QwenLM/Qwen)
四、开始
👉 在线试用QAnything:https://qanything.ai/
4.1 必要条件
必要项 | 最低要求 | 备注 |
---|---|---|
NVIDIA GPU Memory | >= 16GB | 推荐NVIDIA 3090 |
NVIDIA Driver 版本 | >= 525.105.17 | |
CUDA 版本 | >= 12.0 | |
docker compose 版本 | >=1.27.4 | docker compose 安装教程 |
4.2 下载安装
-
step1: 下载本项目
git clone https://github.com/netease-youdao/QAnything.git
-
step2: 下载模型并解压到本项目根目录下
cd QAnything
git lfs install
git clone https://www.modelscope.cn/netease-youdao/qanything_models.git
unzip qanything_models/models.zip # in root directory of the current project
-
step3:更改配置
vim front_end/.env # change 10.55.163.92 to your host
vim docker-compose.yaml # change CUDA_VISIBLE_DEVICES to your gpu device id
-
step4: 启动服务
docker-compose up -d
安装成功后,即可在浏览器输入以下地址进行体验。
-
前端地址: http://{your_host}:5052/qanything
-
api地址: http://{your_host}:5052/api/
详细API文档请移步QAnything API 文档(https://github.com/netease-youdao/QAnything/blob/master/docs/API.md)
参考文献:
[1] https://github.com/netease-youdao/QAnything/blob/master/README_zh.md
相关文章:

LLM漫谈(二)| QAnything支持任意格式文件或数据库的本地知识库问答系统
一、QAnything介绍 QAnything (Question and Answer based on Anything) 是致力于支持任意格式文件或数据库的本地知识库问答系统,可断网安装使用。 您的任何格式的本地文件都可以往里扔,即可获得准确、快速、靠谱的问答体验。 目前已支持格式: PDF&…...

Linux环境vscode clang-format格式化:vscode clang format command is not available亲测有效!
问题现象 vscode安装了clang-format插件,但是使用就报错 问题原因 设置中配置的clang-format插件工具路径不正确。 解决方案-亲测有效! 确认本地安装了clang-format工具:终端输入clang-format(也可能是clang-format-13等版本…...
Vue3前端 响应式数据 知识点
一、ref(基本类型数据,也可以定义对象类型的响应式数据。此时底层用的还是reactive) ref 创建基本类型的响应式数据 作用:定义响应式变量语法: let xxx ref(初始值)返回值: 一个 RefImp1 的实例对象,简称 ref对象或ref,ref 对象的 value 属…...
golang数据库连接池设置多少比较合适,如何设置?
设置数据库连接池的大小需要综合考虑应用程序的需求、数据库系统的性能、服务器资源等因素。连接池大小的不合理设置可能导致性能问题或资源浪费。 以下是一些建议: 考虑应用程序的并发需求: 连接池的大小应该足够满足应用程序的并发需求。如果你的应用…...

一、Mybatis 简介
本章概要 简介持久层框架对比快速入门(基于Mybatis3方式) 1.1 简介 https://mybatis.org/mybatis-3/zh/index.html MyBatis最初是Apache的一个开源项目iBatis, 2010年6月这个项目由Apache Software Foundation迁移到了Google Code。随着开发团队转投G…...

苹果Vision Pro将于1月27日上市!
在无数期待中,苹果全新产品Vision Pro头显终于定下上市日期。 彭博社记者马克古曼(Mark Gurman)于近日在X(前推特)平台爆料了这一信息,预计苹果Vision Pro头显将于2024年1月27日率先在美国上市。 在过去看…...

密码学(一)
文章目录 前言一、Cryptographic Primitives二、Cryptographic Keys2.1 Symmetric key cryptography2.2 asymmetric key cryptography 三、Confidentiality3.1 Symmetric key encryption algorithms3.2 asymmetric key block ciphers3.3 其他 四、Integrity4.1 secure hashing …...
VueRouter
1、用户权限问题 可以在路由全局前置守卫判断当前vuex里是否有token 有token值证明刚才登录过, 无token值证明未登录 router.beforeEach((to, from, next) > {const token store.state.tokenif (token) {// 如果有token, 证明已登录if (!store.state.userInfo.username) {/…...
什么是React.FC | 封装ant design弹框组件之:ant design 修改密码弹框组件
文章目录 一、什么是React.FC组件的 props 是什么意思二、封装ant design弹框组件之:ant design 修改密码弹框组件定义修改密码弹框组件使用修改密码弹框组件:[重要]关于提交时候,不同组件 表单数据共享报错:Button cannot be used as a JSX component.一、什么是React.FC …...
DHCP
一、DHCP 1.1 什么是dhcp DHCP动态主机配置协议,通常被应用在大型的局域网络环境中,主要作用是集中地管理、分配IP地址,使网络环境中的主机动态的获得IP地址、DNS服务器地址等信息,并能够提升地址的使用率。 DHCP作为用应用层协…...

VS code的使用介绍
VS code的使用介绍 简介下载和安装常用的插件使用教程快捷键 集成Git未找到 Git。请安装 Git,或在 "git.path" 设置中配置。操作步骤打开文件夹初始化仓库文件版本控制状态提交文件到git打开git操作栏位 好用的插件ChineseDraw.io Integration实体关系 Gi…...

【蓝桥杯选拔赛真题57】python兔子分胡萝卜 第十四届青少年组蓝桥杯python 选拔赛比赛真题解析
目录 python兔子分胡萝卜 一、题目要求 1、编程实现 2、输入输出...

Spring MVC中JSON数据处理方式!!!
添加json依赖 <!--spring-json依赖--><dependency><groupId>com.fasterxml.jackson.core</groupId><artifactId>jackson-databind</artifactId><version>2.9.0</version></dependency> 注解 RequestBody:作…...
学习JavaEE的日子 阶段回顾
标识符 含义:给类、变量、方法、接口取名字的时候使用到的字符序列 组成:大小写字母 、数字、$、_、中文 注意事项: 不能以数字开头 区分大小写字母 不能使用除了$和_以外的特殊符号 不能使用Java的关键字 考虑到编码问题不要使用中文 关…...

深入理解 Flink(一)Flink 架构设计原理
大数据分布式计算引擎设计实现剖析 MapReduce MapReduce 执行引擎解析 MapReduce 的组件设计实现图 Spark 执行引擎解析 Spark 相比于 RM 的真正优势的地方在哪里:(Simple、Fast、Scalable、Unified) DAG 引擎中间计算结果可以进行内存持…...

Python pip 常用指令
前言 Python的pip是一个强大的包管理工具,它可以帮助我们安装、升级和管理Python的第三方库。以下是一些常用的pip指令。 1. 安装第三方库 使用pip安装Python库非常简单,只需要使用pip install命令,后面跟上库的名字即可。 # 安装virtuale…...
Eureka工作原理详解
摘要:本文将详细介绍Eureka的工作原理,包括服务注册、服务发现、心跳检测等关键概念。通过阅读本文,您将了解到Eureka如何实现高可用、可扩展的服务注册中心。 一、引言 在微服务架构中,服务注册与发现是一个重要的环节。为了实…...

开源加解密库之GmSSL
一、简介 GmSSL是由北京大学自主开发的国产商用密码开源库,实现了对国密算法、标准和安全通信协议的全面功能覆盖,支持包括移动端在内的主流操作系统和处理器,支持密码钥匙、密码卡等典型国产密码硬件,提供功能丰富的命令行工具及…...

小程序分销商城,打造高效线上购物体验
小程序商城系统,为您带来前所未有的在线购物体验。它不仅提供线上商城购物、在线下单、支付及配送等功能,还凭借其便捷性成为众多商家的首选。 想象一下,商家可以展示琳琅满目的商品,包括图片、文字描述、价格及库存等详尽信息。而…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...