Grounding 模型 + SAM 报错
引入 Grounding 目标检测模型串联 SAM 从而实现实例分割任务,目前支持 Grounding DINO 和 GLIP
参考教程
MMDetection-SAM
如果是 Grounding DINO 则安装如下依赖即可
cd playground
pip install git+https://github.com/facebookresearch/segment-anything.git
pip install git+https://github.com/IDEA-Research/GroundingDINO.git # 需要编译 CUDA OP,请确保你的 PyTorch 版本、GCC 版本和 NVCC 编译版本兼容
如果是 GLIP 则安装如下依赖即可
cd playgroundpip install git+https://github.com/facebookresearch/segment-anything.git
pip install einops shapely timm yacs tensorboardX ftfy prettytable pymongo transformers nltk inflect scipy pycocotools opencv-python matplotlibgit clone https://github.com/microsoft/GLIP.git
cd GLIP; python setup.py build develop --user # 需要编译 CUDA OP,请确保你的 PyTorch 版本、GCC 版本和 NVCC 编译版本兼容,暂时不支持 PyTorch 1.11+ 版本
执行功能演示代码报错
(mmdet-sam) hadoop@server:~/jupyter/mmdet-sam/playground/mmdet_sam$ python detector_sam_demo.py ../images/cat_remote.jpg \
configs/GroundingDINO_SwinT_OGC.py \
../models/groundingdino_swint_ogc.pth \
-t "cat . remote" \
--sam-device cpu
[nltk_data] Downloading package punkt to /home/hadoop/nltk_data...
[nltk_data] Package punkt is already up-to-date!
[nltk_data] Downloading package averaged_perceptron_tagger to
[nltk_data] /home/hadoop/nltk_data...
[nltk_data] Package averaged_perceptron_tagger is already up-to-
[nltk_data] date!
final text_encoder_type: bert-base-uncased
pytorch_model.bin: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████| 440M/440M [00:25<00:00, 17.2MB/s]
Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertModel: ['cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.bias']
- This IS expected if you are initializing BertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing BertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Traceback (most recent call last):
File "detector_sam_demo.py", line 511, in <module>
main()
File "detector_sam_demo.py", line 438, in main
det_model = build_detecter(args)
File "detector_sam_demo.py", line 160, in build_detecter
detecter = __build_grounding_dino_model(args)
File "detector_sam_demo.py", line 117, in __build_grounding_dino_model
checkpoint = torch.load(args.det_weight, map_location='cpu')
File "/home/hadoop/anaconda3/envs/mmdet-sam/lib/python3.8/site-packages/torch/serialization.py", line 600, in load
with _open_zipfile_reader(opened_file) as opened_zipfile:
File "/home/hadoop/anaconda3/envs/mmdet-sam/lib/python3.8/site-packages/torch/serialization.py", line 242, in __init__
super(_open_zipfile_reader, self).__init__(torch._C.PyTorchFileReader(name_or_buffer))
OSError: [Errno 22] Invalid argument
其中 242行代码长这样

这个语句是打开一个文件, 检查输入参数
模型地址: ../models/groundingdino_swint_ogc.pth
发现此模型只有44k, 肯定不对, 重新下载模型, 有662M, 重新下载模型重新跑
遇到此问题, 在网上搜答案是找不到的, 还是要分析好自己的输入参数
相关文章:
Grounding 模型 + SAM 报错
引入 Grounding 目标检测模型串联 SAM 从而实现实例分割任务,目前支持 Grounding DINO 和 GLIP 参考教程 MMDetection-SAM 如果是 Grounding DINO 则安装如下依赖即可 cd playground pip install githttps://github.com/facebookresearch/segment-anything.git pip…...
linux 网络基础配置
将Linux主机接入到网络,需要配置网络相关设置一般包括如下内容: 主机名 iP/netmask (ip地址,网关) 路由:默认网关 网络连接状态 DNS服务器 (主DNS服务器 次DNS服务器 第三个DNS服务器) 一、…...
leetcode-相同的树
100. 相同的树 使用递归的方法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def isSameTree(self, p: …...
Leetcode17-好数对的数目(1512)
1、题目 给你一个整数数组 nums 。 如果一组数字 (i,j) 满足 nums[i] nums[j] 且 i < j ,就可以认为这是一组 好数对 。 返回好数对的数目。 示例 1: 输入:nums [1,2,3,1,1,3] 输出:4 解释:有 4 组好数对&am…...
Ubuntu22.04开机左上角下划线闪烁不开机
按下CtrlAltF2,打开TTY系统,然后通过用户名和密码登录,随后使用 sudo apt --fix-broken install 根据提示排除错误信息,然后使用apt安装lightdm安装就行。 tips:当使用EasyConnect的时候,你可能参考了下面这篇文章知…...
提升测试多样性,揭秘Pytest插件pytest-randomly
大家可能知道在Pytest测试生态中,插件扮演着不可或缺的角色,为开发者提供了丰富的功能和工具。其中,pytest-randomly 插件以其能够引入随机性的特性而备受欢迎。本文将深入探讨 pytest-randomly 插件的应用,以及如何通过引入随机性…...
C++学习笔记(三十二):c++ 堆内存与栈内存比较
本节对堆和栈内存进行描述。 应用程序启动后,操作系统将整个程序加载到内存,分配相应的物理ram,确保程序可以正常运行。堆和栈是ram中存在的两个区域。栈通常是一个预定义大小的内存区域,一般是2M字节左右。堆也是预定了默认值的…...
探索Shadowsocks-Android:保护你的网络隐私
探索Shadowsocks-Android:保护你的网络隐私 I. 引言 在数字时代,网络隐私和安全变得愈发重要。我们越来越依赖互联网,但同时也面临着各种网络限制和监控。在这个背景下,Shadowsocks-Android应用程序应运而生,为用户提…...
蓝桥杯练习题(二)
📑前言 本文主要是【算法】——蓝桥杯练习题(二)的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 …...
将文本文件导入Oracle数据库的简便方法:SQL Developer
需求 我有一个文本文件dbim.txt,是通过alert log生成的,内容如下: 2020-09-11 2020-09-11 ... 2023-12-03 2023-12-03 2023-12-26我已经在Oracle数据库中建立了目标表: create table dbim(a varchar(16));我想把日志文件导入Or…...
Mac iTerm2 配置
Mac iTerm2 配置 安装 brew install iTerm2安装完成之后,需要重新打开终端,既可以看见安装 iTerm2 的效果。 iTerm2 美化 使用 oh-my-zsh 美化 iTerm2 终端 安装 brew install wget sh -c "$(wget https://raw.github.com/ohmyzsh/ohmyzsh/mast…...
R语言下载安装及VScode配置
文章目录 1. R 下载和安装1.1 下载1.2 安装 2. VSCODE 配置2.1 安装R拓展2.2 安装R语言辅助功能包2.3 DEBUG 1. R 下载和安装 1.1 下载 网址:https://www.r-project.org/ 选择一个镜像地址下载 选择对应的版本 一般选择base即可 1.2 安装 下载安装包后按提示安装…...
【hyperledger-fabric】部署Java应用远程访问智能合约
简介 首先是根据b站的视频 hyperledger-fabric【3】在 java 应用中访问合约 以及hyperledger-fabric【5】Java应用和私有数据,本文章主要讲述的是视频中我遇到的问题,以及相关知识点的总结。 遇到的问题 问题1:git clone下载下来的代码发现…...
SpringBoot 调用mybatis报错:Invalid bound statement (not found):
启动SpringBoot报错:Invalid bound statement (not found): 参考此文排查 命中了第6条 记录一手坑爹的Invalid bound statement (not found)(六个方面) mapper文件路径配置错误 订正以后 问题解决...
PHP开发日志 ━━ 不同方法判断某个数组中是否存在指定的键名,测试哪种方法效率高
我们可以用isset($arr[a]) 或者 array_key_exists(a, $arr) 来判断a键名是否存在与$arr数组。 那么这两种方式哪个运行速度快呢? 不多废话了,现在我们写一段代码来测试一下: $array [a > 1, b > 2, c > 3];$start microtime(tru…...
【pytorch学习】 深度学习 教程 and 实战
pytorch编程实战博主:https://github.com/lucidrains https://github.com/lucidrains/vit-pytorch...
js中和Vue中的事件委托(事件代理)的实现方法
目录 一、事件委托(事件代理) 1、事件委托的优点 2、事件委托的缺点 3、为什么要使用事件委托 4、事件委托实现原理 5、DOM事件流 6、事件委托的实现方法 1、vue写法 1.1、html代码 1.2、js代码 2、原生的写法其实也差不多: 2.1、…...
C++学习笔记——对象的指针
目录 一、对象的指针 二、减少对象的复制开销 三、应用案例 游戏引擎 图像处理库 数据库管理系统 航空航天软件 金融交易系统 四、代码的案例应用 一、对象的指针 是一种常用的技术,用于处理对象的动态分配和管理。使用对象的指针可以实现以下几个方面的功…...
QT5.14 实现ModbusTCP客户端 Demo
本文在QT5.14平台,基于QModbusClientTcp类,实现了客户端对单个寄存器的读写,用ModbusSlave做服务器做测试。 1.界面 (1)更改读按钮的名称为bt_Read (2)更改写按钮的名称为bt_Write 2.修改pro文件的第三行 greaterThan(QT_MAJOR_VERSION, 4)…...
c++析构函数
析构函数的简述 1. 析构函数和构造函数类似,是c规定当对象的生命周期结束时,默认你会调用析构函数。 2. 同理,当我们不写析构函数的时候,编译器会自动生成一个空实现的析构函数。 3. 析构函数只能编译器自己调用,我们…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...
[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
