当前位置: 首页 > news >正文

读写锁(arm)

 参考文章读写锁 - ARM汇编同步机制实例(四)_汇编 prefetchw-CSDN博客

读写锁允许多个执行流并发访问临界区。但是写访问是独占的。适用于读多写少的场景

另外好像有些还区分了读优先和写优先

读写锁定义

typedef struct {arch_rwlock_t raw_lock;
#ifdef CONFIG_GENERIC_LOCKBREAKunsigned int break_lock;
#endif
#ifdef CONFIG_DEBUG_SPINLOCKunsigned int magic, owner_cpu;void *owner;
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOCstruct lockdep_map dep_map;
#endif
} rwlock_t;typedef struct {u32 lock;
} arch_rwlock_t;

 可以看到在arm上面读写锁其实就是一个u32的变量。通过这个变量的值能够知道读者和写者的情况。(arm上面有strex指令能够实现独占访问)

读加锁

read_lock->_raw_read_lock->__raw_read_lock->do_raw_read_lock->arch_read_lock

可以看到就是不断的用指令strex去改写这个值,直到修改成功。

读加锁简单的理解就是执行rw->lock++。

static inline void arch_read_lock(arch_rwlock_t *rw)
{unsigned long tmp, tmp2;
/* 指令strex https://blog.csdn.net/w906787/article/details/78907067 指令条件pl(非负)https://blog.csdn.net/m0_73649248/article/details/132796539rsb及常见指令 https://blog.csdn.net/Tong89_xi/article/details/103458289wfe https://blog.csdn.net/xy010902100449/article/details/126812552
*/prefetchw(&rw->lock);__asm__ __volatile__(
"1:	ldrex	%0, [%2]\n"      // ldrex tmp, *(&rw->lock)  获取lock的值并保存在tmp中
"	adds	%0, %0, #1\n"    // adds  tmp, tmp, #1       tmp = tmp + 1 //难道是被当做一个有符号数看的,0x80000000其实是个负数??
"	strexpl	%1, %0, [%2]\n"  // strexpl tmp2, tmp, *(&rw->lock)  rw->lock = tmp, strex能独占访问,赋值成功tmp2会设置为0,反之为1WFE("mi")                // wfemi (CPSR NZCV )负数就进入低功耗模式,睡眠//需要特定的事件触发才能被唤醒
"	rsbpls	%0, %1, #0\n"    // rsbpls  tmp, tmp2, #0 tmp = 0 - tmp2 运算结果会影响到cpsr寄存器。如果cpsr中N为1(感觉这里还是adds如果为负数),则执行减法,并且修改cpsr寄存器
"	bmi	1b"                  // bmi  1b  如果strex执行成功 tmp = 0 - tmp2(0) = 0,为0 bmi不执行: "=&r" (tmp), "=&r" (tmp2): "r" (&rw->lock): "cc");smp_mb();
}

 之前一直不理解adds为什么会出现负数的情况。感觉确实是把相加的结果看做是有符号的,即如果加出来的值,最高位为1,cpsr的n就会被置为1

"	adds	%0, %0, #1\n"    // adds  tmp, tmp, #1       tmp = tmp + 1 //难道是被当做一个有符号数看的,0x80000000其实是个负数??
"	strexpl	%1, %0, [%2]\n"  // strexpl tmp2, tmp, *(&rw->lock)  rw->lock = tmp, strex能独占访问,赋值成功tmp2会设置为0,反之为1

测试样例 

int test_thread(void* a)
{printk(KERN_EMERG "\r\n thread start\n");
#ifdef CONFIG_PREEMPT_COUNTprintk(KERN_EMERG "\r\n CONFIG_PREEMPT_COUNT\n");
#elseprintk(KERN_EMERG "\r\n not define CONFIG_PREEMPT_COUNT\n");
#endif	unsigned int cpsr = 0;unsigned long tmp = 0;unsigned long tmp2 = 0x80000000;__asm__ __volatile__("mrs	%0, cpsr\n"        //rw->lock = 0;:: "r" (cpsr): "cc");printk(KERN_EMERG "\r\n cpsr 0x%lx\n", cpsr);__asm__ __volatile__("adds	%0, %1, #1\n": "=&r" (tmp): "r" (tmp2): "cc");__asm__ __volatile__("mrs	%0, cpsr\n"        //rw->lock = 0;:: "r" (cpsr): "cc");printk(KERN_EMERG "\r\n after cpsr 0x%lx, tmp 0x%lx\n", cpsr, tmp);printk(KERN_EMERG "\r\n thread end\n");return 0;
}

可以看到经过tmp = tmp2 + 1后cpsr的最高位(N)确实被置为了1 

 

那结合后面写加锁,就能看到,如果有写者加了锁,读者是无法成功加锁的(strexpl 需要tmp非负才执行)。但是如果存在读者的情况下,其他读者继续尝试加锁是可以成功的。这样就运行多个读者进行临界区

 

读解锁

其实就是rw->lock--。最后需要注意的是如果tmp为0,即没有读者的时候,需要唤醒因为获取写锁失败的cpu(dsb_sev)

If the Event Register is not set, WFE(这个并不会让出cpu) suspends execution until 
one ofthe following events occurs:

1、an IRQ interrupt, unless masked by the CPSR I-bit
2、an FIQ interrupt, unless masked by the CPSR F-bit
3、an Imprecise Data abort, unless masked by the CPSR A-bit
4、a Debug Entry request, if Debug is enabled
5、an Event signaled by another processor using the SEV instruction.
————————————————
版权声明:本文为CSDN博主「狂奔的乌龟」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/xy010902100449/article/details/126812552

static inline void arch_read_unlock(arch_rwlock_t *rw)
{unsigned long tmp, tmp2;smp_mb();prefetchw(&rw->lock);__asm__ __volatile__(
"1:	ldrex	%0, [%2]\n"      //tmp = rw->lock
"	sub	%0, %0, #1\n"        //tmp = tmp - 1
"	strex	%1, %0, [%2]\n"  //rw->lock = tmp
"	teq	%1, #0\n"            //检查指令是否执行成功
"	bne	1b": "=&r" (tmp), "=&r" (tmp2): "r" (&rw->lock): "cc");if (tmp == 0)dsb_sev();//唤醒获取锁失败的cpu(wfe需要sev事件唤醒)
}

写加锁

write_lock->_raw_write_lock->__raw_write_lock->do_raw_write_lock

1、感觉这里是写者加锁,需要等待全部读者退出才行 。并且这个时候写者是没有加锁成功的(即lock的值没有成功赋值为0x80000000)。read_lock那里不会出现相加为负数的情况。读者一直能够加锁成功。即只有等到读者全部退出,才能加锁成功。如果在你尝试加锁的时候,后面又来了很多加读锁的情况,你也无法阻止。只能看着读锁加锁成功

2、rw->lock = 0x80000000

static inline void arch_write_lock(arch_rwlock_t *rw)
{unsigned long tmp;prefetchw(&rw->lock);__asm__ __volatile__(
"1:	ldrex	%0, [%1]\n"  //tmp = rw->lock
"	teq	%0, #0\n"        //tmp == 0,需要读者全部退出才行WFE("ne")            //不为0休眠,等待特定事件发生后唤醒
"	strexeq	%0, %2, [%1]\n" // rw->lock = 0x80000000
"	teq	%0, #0\n"        // %0保存strex执行结果,0表示成功, 1表示失败
"	bne	1b"              //执行失败,则重复上述流程: "=&r" (tmp): "r" (&rw->lock), "r" (0x80000000): "cc");smp_mb();
}

写解锁

比较简单就是rw->lock = 0,然后唤醒其他获取锁失败的cpu

static inline void arch_write_unlock(arch_rwlock_t *rw)
{smp_mb();__asm__ __volatile__("str	%1, [%0]\n"        //rw->lock = 0;:: "r" (&rw->lock), "r" (0): "cc");dsb_sev();//这里估计是唤醒获取锁失败的cpu
}

总结

(1)假设临界区内没有任何的thread,这时候任何read thread或者write thread可以进入,但是只能是其一。

(2)假设临界区内有一个read thread,这时候新来的read thread可以任意进入,但是write thread不可以进入

(3)假设临界区内有一个write thread,这时候任何的read thread或者write thread都不可以进入

(4)假设临界区内有一个或者多个read thread,write thread当然不可以进入临界区,但是该write thread也无法阻止后续read thread的进入,他要一直等到临界区一个read thread也没有的时候,才可以进入,多么可怜的write thread。
————————————————
版权声明:本文为CSDN博主「生活需要深度」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u012294613/article/details/123905288

相关文章:

读写锁(arm)

参考文章读写锁 - ARM汇编同步机制实例(四)_汇编 prefetchw-CSDN博客 读写锁允许多个执行流并发访问临界区。但是写访问是独占的。适用于读多写少的场景 另外好像有些还区分了读优先和写优先 读写锁定义 typedef struct {arch_rwlock_t raw_lock; #if…...

【第33例】IPD体系进阶:市场细分

目录 内容简介 市场细分原因 市场细分主要活动 市场细分流程 作者简介 内容简介 这节内容主要来谈谈 IPD 市场管理篇的市场细分步骤。 其中,市场管理(Market Management)是一套系统的方法。 用于对广泛的机会进行选择性收缩,...

response 拦截器返回的二进制文档(同步下载excel)如何配置

response 拦截器返回的二进制文档(同步下载excel)如何配置 一、返回效果图二、response如何配置 一、返回效果图 二、response如何配置 service.interceptors.response.use(response > {// 导出excel接口if (response.config.isExport) {return resp…...

为什么要使用云原生数据库?云原生数据库具体有哪些功能?

相比于托管型关系型数据库,云原生数据库极大地提高了MySQL数据库的上限能力,是云数据库划代的产品;云原生数据库最早的产品是AWS的 Aurora。AWS Aurora提出来的 The log is the database的理念,实现存储计算分离,把大量…...

05- OpenCV:图像操作和图像混合

目录 一、图像操作 1、读写图像 2、读写像素 3、修改像素值 4、Vec3b与Vec3F 5、相关的代码演示 二、图像混合 1、理论-线性混合操作 2、相关API(addWeighted) 3、代码演示(完整的例子) 一、图像操作 1、读写图像 (1)…...

人脸识别(Java实现的)

虹软人脸识别&#xff1a; 虹软人脸识别的地址&#xff1a;虹软视觉开放平台—以免费人脸识别技术为核心的人脸识别算法开放平台 依赖包&#xff1a; 依赖包是从虹软开发平台下载的 在项目中引入这个依赖包 pom.xml <!-- 人脸识别 --><dependency><gr…...

Maven 依赖管理项目构建工具 教程

Maven依赖管理项目构建工具 此文档为 尚硅谷 B站maven视频学习文档&#xff0c;由官方文档搬运而来&#xff0c;仅用来当作学习笔记用途&#xff0c;侵删。 另&#xff1a;原maven教程短而精&#xff0c;值得推荐&#xff0c;下附教程链接。 atguigu 23年Maven教程 目录 文章目…...

供应链+低代码,实现数字化【共赢链】转型新策略

在深入探讨之前&#xff0c;让我们首先明确供应链的基本定义。供应链可以被理解为一个由采购、生产、物流配送等环节组成的网状系统&#xff0c;它始于原材料的采购&#xff0c;经过生产加工&#xff0c;最终通过分销和零售环节到达消费者手中。 而数字化供应链&#xff0c;则是…...

[力扣 Hot100]Day3 最长连续序列

题目描述 给定一个未排序的整数数组 nums &#xff0c;找出数字连续的最长序列&#xff08;不要求序列元素在原数组中连续&#xff09;的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 出处 思路 此题可用带排序的哈希表&#xff0c;先构建哈希表&#xff0…...

【办公技巧】Word功能区灰色显示不能编辑,怎么破?

Word文档可以设置加密来保护文件禁止修改&#xff0c;但是在word文档中设置限制编辑功能时对它的作用是否有详细的了解呢&#xff1f;今天为大家介绍word限制编辑功能的作用以及忘记了限制编辑密码该如何解决。 设置限制大家应该都清楚&#xff0c;就是点击工具栏中的审阅 – …...

全志V853开发板原理图

本章节将对开发板几个主要的部件的原理图进行说明&#xff0c;方便快速上手开发板的硬件资料。 开发板硬件框图如下&#xff1a; 模块介绍 GPIO 分配 此表格为 V853 部分重要的 GPIO 的分配表&#xff0c;> 表示对IO的另外一个复用&#xff0c;完整的 GPIO 分配请参阅原理…...

【解决】Unity Project 面板资源显示丢失的异常问题处理

开发平台&#xff1a;Unity 2021.3.7f1c1   一、问题描述 在开发过程中&#xff0c;遭遇 Project 面板资源显示丢失、不全的问题。但 Unity Console 并未发出错误提示。   二、解决方案&#xff1a;删除 Library 目录 前往 “工程目录/Library” 删除内部所有文件并重打开该…...

Hyperledger Fabric Docker 方式多机部署生产网络

规划网络拓扑 3 个 orderer 节点&#xff1b;组织 org1 , org1 下有两个 peer 节点&#xff0c; peer0 和 peer1; 组织 org2 , org2 下有两个 peer 节点&#xff0c; peer0 和 peer1; 因为我只有 3 台虚拟机资源所以没法实现完全的多机部署&#xff0c;资源使用规划如下&#…...

高效降压控制器FP7132XR:为高亮度LED提供稳定可靠的电源

目录 一. FP7132概述 二. 驱动电路&#xff1a;FP7132 三. FP7132应用 高亮度LED作为新一代照明技术的代表&#xff0c;已经广泛应用于各种领域。然而&#xff0c;高亮度LED的工作电压较低&#xff0c;需要一个高效降压控制器来为其提供稳定可靠的电源。在众多降压控制器…...

Spring Boot - Application Events 的发布顺序_ApplicationEnvironmentPreparedEvent

文章目录 Pre概述Code源码分析 Pre Spring Boot - Application Events 的发布顺序_ApplicationEnvironmentPreparedEvent 概述 Spring Boot 的广播机制是基于观察者模式实现的&#xff0c;它允许在 Spring 应用程序中发布和监听事件。这种机制的主要目的是为了实现解耦&#…...

华为HCIE课堂笔记第十三章 IPv6地址配置

目录 第十三章 IPv6地址配置 13.1 IPv6地址无状态自动配置 13.1.1 RS和RA报文格式 13.1.2 RA的Flags字段 13.1.3 地址的生存周期 13.1.4 RA报文中前缀中的Flags 13.2 DHCPv6 13.2.1 DHCPV6的概念 13.2.2 DCHPv6的报文 第十三章 IPv6地址配置 13.1 IPv6地址无状态自动…...

计算机网络-VLAN间通信

之前复习了VLAN的概念以及几个接口类型。VLAN在二层可以实现广播域的划分&#xff0c;VLAN间可以实现二层通信&#xff0c;但是不能实现三层通信&#xff0c;需要借助其它方式。 一、概述 实际网络部署中一般会将不同IP地址段划分到不同的VLAN。同VLAN且同网段的PC之间可直接进…...

vue3的福音框架arco.design

前言&#xff1a; 在vue2于2023年底正式宣布不在维护&#xff0c;vue3使用越来越频繁的时刻&#xff0c;我们实现项目的辅助框架也越来越多。element, iview, antd 等经典框架继续风靡一时&#xff0c;不过也有很多好的框架&#xff0c;功能也强大&#xff0c;比如我们今天说的…...

BSP视频教程第29期:J1939协议栈CAN总线专题,源码框架,执行流程和应用实战解析,面向车通讯,充电桩,模组通信等(2024-01-08)

视频教程汇总帖&#xff1a;【学以致用&#xff0c;授人以渔】2024视频教程汇总&#xff0c;DSP第12期&#xff0c;ThreadX第9期&#xff0c;BSP驱动第29期&#xff0c;USB实战第5期&#xff0c;GUI实战第3期&#xff08;2024-01-08&#xff09; - STM32F429 - 硬汉嵌入式论坛 …...

Java lambda表达式如何自定义一个toList Collector

匿名类&#xff1a; package l8;import java.util.*; import java.util.function.BiConsumer; import java.util.function.BinaryOperator; import java.util.function.Function; import java.util.function.Supplier; import java.util.stream.Collector; import java.util.s…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

第7篇:中间件全链路监控与 SQL 性能分析实践

7.1 章节导读 在构建数据库中间件的过程中&#xff0c;可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中&#xff0c;必须做到&#xff1a; &#x1f50d; 追踪每一条 SQL 的生命周期&#xff08;从入口到数据库执行&#xff09;&#…...