当前位置: 首页 > news >正文

GPT实战系列-简单聊聊LangChain搭建本地知识库准备

GPT实战系列-简单聊聊LangChain搭建本地知识库准备

img

LangChain 是一个开发由语言模型驱动的应用程序的框架,除了和应用程序通过 API 调用, 还会:

  • 数据感知 : 将语言模型连接到其他数据源

  • 具有代理性质 : 允许语言模型与其环境交互

LLM大模型相关文章:

GPT实战系列-简单聊聊LangChain

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-大话LLM大模型训练

GPT实战系列-探究GPT等大模型的文本生成

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

LangChain是什么?

 

构建本地的行业、专家知识库,就需要LangChain 支持常见角色和用途。

  • 个人助理(personal assistants) : 主要的 LangChain 使用用例。个人助理需要采取行动、记住交互并具有您的有关数据的知识。

  • 问答(question answering) : 第二个重大的 LangChain 使用用例。仅利用一些文档中的信息来构建答案,回答特定文档中的问题。

除LangChain外,还需要什么?

首先需要把文本转换为文本向量,即自然语言处理常常要用的Embedding技术,Text2Vector。

常见的Embedding接口有 OpenAI,Sentence Transformers,BGE, Huggingface,ModelScope,TensorFlowHub

例如,OpenAI提供接口,需要翻墙:

from langchain.embeddings import OpenAIEmbeddings
​
embeddings = OpenAIEmbeddings()

SentenceTransformer的接口:

from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings
​
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
# Equivalent to SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")

Huggingface接口,直接下载需要翻墙。

没有梯子怎么办?如有需要可以单独写篇。

from langchain.embeddings import HuggingFaceEmbeddings
​
embeddings = HuggingFaceEmbeddings()

ModelScope,非常适合国内,不用翻墙。

from langchain.embeddings import ModelScopeEmbeddings
​
model_id = "damo/nlp_corom_sentence-embedding_english-base"
​
embeddings = ModelScopeEmbeddings(model_id=model_id)

Tensorflow hub,需要安装tensorflow组件。现在用pytorch,就很少使用tensorflow。

from langchain.embeddings import TensorflowHubEmbeddings
​
embeddings = TensorflowHubEmbeddings()
​

One more thing

文本向量直接比较就不足以推广,还需要加上向量数据库。

向量数据库也有很多,选几个熟悉的,比如FAISS,Chroma,Milvus,Redis,Deep Lake等等。

例如 FAISS

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.document_loaders import TextLoader
​
from langchain.document_loaders import TextLoader
​
loader = TextLoader("../../../state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
​
embeddings = OpenAIEmbeddings()
​
db = FAISS.from_documents(docs, embeddings)
​

后面基于LangChain做一些好玩的本地专家库测试吧。

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

 


GPT专栏文章:

GPT实战系列-简单聊聊LangChain

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF 

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关文章:

GPT实战系列-简单聊聊LangChain搭建本地知识库准备

GPT实战系列-简单聊聊LangChain搭建本地知识库准备 LangChain 是一个开发由语言模型驱动的应用程序的框架,除了和应用程序通过 API 调用, 还会: 数据感知 : 将语言模型连接到其他数据源 具有代理性质 : 允许语言模型与其环境交互 LLM大模型…...

[NAND Flash 6.4] NAND FLASH基本读操作及原理_NAND FLASH Read Operation源码实现

依公知及经验整理,原创保护,禁止转载。 专栏 《深入理解NAND Flash》 <<<< 返回总目录 <<<< ​全文 6000 字 内容摘要 NAND Flash 引脚功能 读操作步骤 NAND Flash中的特殊硬件结构 NAND Flash 读写时的数据流向 Read 操作时序 读时序操作过…...

opencv多张图片实现全景拼接

最近camera项目需要用到全景拼接&#xff0c;故此查阅大量资料&#xff0c;终于将此功能应用在实际项目上&#xff0c;下面总结一下此过程中遇到的一些问题及解决方式&#xff0c;同时也会将源码附在结尾处&#xff0c;供大家参考&#xff0c;本文采用的opencv版本为3.4.12。 首…...

深入理解UML中的继承关系

深入理解UML中的继承关系 在面向对象的设计中&#xff0c;继承关系是构建清晰、可维护系统的关键。统一建模语言&#xff08;UML&#xff09;提供了一种标准化的方法来可视化这些关系。本文将深入探讨UML中的继承关系&#xff0c;并探讨它如何在代码中体现。 什么是继承关系&a…...

CMU15-445-Spring-2023-Project #2 - B+Tree

前置知识&#xff1a;参考上一篇博文 CMU15-445-Spring-2023-Project #2 - 前置知识&#xff08;lec07-010&#xff09; CHECKPOINT #1 Task #1 - BTree Pages 实现三个page class来存储B树的数据。 BTree Page internal page和leaf page继承的基类&#xff0c;只包含两个…...

matplotlib:热图、箱形图、小提琴图、堆叠面积图、雷达图、子图

简介&#xff1a;在数字化的世界里&#xff0c;从Web、HTTP到App&#xff0c;数据无处不在。但如何将这些复杂的数据转化为直观、易懂的信息&#xff1f;本文将介绍六种数据可视化方法&#xff0c;帮助你更好地理解和呈现数据。 热图 (Heatmap)&#xff1a;热图能有效展示用户…...

Django数据库选移的preserve_default=False是什么意思?

有下面的迁移命令&#xff1a; migrations.AddField(model_namemovie,namemov_group,fieldmodels.CharField(defaultdjango.utils.timezone.now, max_length30),preserve_defaultFalse,),迁移命令中的preserve_defaultFalse是什么意思呢&#xff1f; 答&#xff1a;如果模型定…...

逸学Docker【java工程师基础】2.Docker镜像容器基本操作+安装MySQL镜像运行

基础的镜像操作 在这里我们的应用程序比如redis需要构建成镜像&#xff0c;它作为一个Docker文件就可以进行构建&#xff0c;构建完以后他是在本地的&#xff0c;我们可以推送到镜像服务器&#xff0c;逆向可以拉取到上传的镜像&#xff0c;或者说我们可以保存为压缩包进行相互…...

基于Java SSM框架实现医院管理系统项目【项目源码】计算机毕业设计

基于java的SSM框架实现医院管理系统演示 SSM框架 当今流行的“SSM组合框架”是Spring SpringMVC MyBatis的缩写&#xff0c;受到很多的追捧&#xff0c;“组合SSM框架”是强强联手、各司其职、协调互补的团队精神。web项目的框架&#xff0c;通常更简单的数据源。Spring属于…...

【java八股文】之Spring系列篇

【java八股文】之JVM基础篇-CSDN博客 【java八股文】之MYSQL基础篇-CSDN博客 【java八股文】之Redis基础篇-CSDN博客 【java八股文】之Spring系列篇-CSDN博客 【java八股文】之分布式系列篇-CSDN博客 【java八股文】之多线程篇-CSDN博客 【java八股文】之JVM基础篇-CSDN博…...

关于MySQL源码的学习 这里是一些建议

学习MySQL源码需要一定的编程基础&#xff0c;特别是C语言和数据结构。以下是一些建议&#xff0c;帮助你更好地入手学习MySQL源码&#xff1a; 基础知识 熟悉C语言编程基本概念、数据结构和算法。了解Linux操作系统基本概念&#xff0c;如进程、线程、内存管理、文件系统等。…...

Mysql是怎样运行的--下

文章目录 Mysql是怎样运行的--下查询优化explainoptimizer_trace InnoDB的Buffer Pool&#xff08;缓冲池&#xff09;Buffer Pool的存储结构空闲页存储--free链表脏页&#xff08;修改后的数据&#xff09;存储--flush链表 使用Buffer PoolLRU链表的管理 事务ACID事务的状态事…...

yum来安装php727

yum 安装php727,一键安装&#xff0c;都是安装在系统的默认位置&#xff0c;方便快捷 先确定linux平台中centos的版本信息&#xff0c;一下内容针对el7 查看linux版本 &#xff1a; cat /etc/redhat-release 查看内核版本命令&#xff1a; cat /proc/version (0)如果有安装好…...

基于jackson封装的json字符串与javaBean对象转换工具

文章目录 一、概述二、编码实现1. pom文件引入组件2. 核心代码 三、功能测试1. 测试文件2. 测试代码 四&#xff0c;完整代码 一、概述 带有API接口交互的web项目开发过程中&#xff0c;json字符串与javaBean对象之间的相互转换是比较常见的需求&#xff0c;基于jackson Objec…...

js中的数据类型

JavaScript 中有以下几种常见的数据类型&#xff1a; 基本类型&#xff08;原始类型&#xff09;&#xff1a; 字符串&#xff08;String&#xff09;&#xff1a;表示文本数据。数字&#xff08;Number&#xff09;&#xff1a;表示数值数据。布尔&#xff08;Boolean&#xf…...

vue3+vant+cropper.js实现移动端图片裁剪功能

一、前言 最近做项目中遇到一个需求&#xff0c;需要对海报图片按照一定的比例进行裁剪并上传到oss。一开始这个需求思路有两个&#xff0c;使用canvas原生或者寻找现成的第三方库&#xff0c;对比了一番觉得canvas实现时间耗费较长&#xff0c;且秉承着不重复造轮子的原则&am…...

springCould中的Bus-从小白开始【11】

目录 &#x1f9c2;1.Bus是什么❤️❤️❤️ &#x1f32d;2.什么是总线❤️❤️❤️ &#x1f953;3.rabbitmq❤️❤️❤️ &#x1f95e;4.新建模块3366❤️❤️❤️ &#x1f373;5.设计思想 ❤️❤️❤️ &#x1f37f;6.添加消息总线的支持❤️❤️❤️ &#x1f9…...

xshell和xftp

1.xshell和xftp的关系 Xftp和Xshell都是Xmanager Power Suite的组件&#xff0c;它们的功能和用途有所不同。 Xshell是一个用于MS Windows平台的强大的SSH、telnet和rlogin终端仿真软件&#xff0c;它使得用户能轻松和安全地从Windows PC上访问Unix/Linux主机。 Xftp是一个用…...

python for...else用法,一个实例就能让你明白

直接上代码&#xff0c;很简单&#xff0c;不用讲解吧&#xff0c;看不懂的话&#xff0c;就需要补充下基础知识了。 def funct2():for i in range(4):try:assert i>2print("success")breakexcept Exception as e:print(error)continueelse:print(循环不合预期)d…...

windows 设置ip命令bat脚本

您可以使用以下命令创建一个批处理文件&#xff08;.bat&#xff09;来添加IP地址&#xff1a; echo off set ipaddress set subnetmask set gatewaynetsh interface ip set address name"以太网" sourcestatic address%ipaddress% mask%subnetmask% gateway%gatewa…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...