当前位置: 首页 > news >正文

Java并发基础:一文讲清util.concurrent包的作用

Java并发基础:一文讲清util.concurrent包的作用- 程序员古德

java.util.concurrent包是 Java 中用于并发编程的重要工具集,提供了线程池、原子变量、并发集合、同步工具类、阻塞队列等一系列高级并发工具类,使用这些工具类可以极大地简化并发编程的难度,减少出错的可能性,提高程序的效率和可维护性。

官方文档地址:https://docx.iamqiang.com/jdk11/api/java.base/java/util/concurrent/package-summary.html

Executor Framework(执行器框架)

Executor Framework是Java并发编程中一个非常强大的组件,它提供了一种标准的方法来启动、管理和控制线程的执行,执行器框架主要由接口和类组成,如Executor、Executors、ExecutorService、Future和Callable,这些组件共同协作,提供了一种灵活且高效的线程管理机制。

以下是关于执行器框架中一些关键组件的说明:

  1. Executor接口:这是执行器框架中最基本的接口,它定义了一个execute方法,用于接收一个实现了Runnable接口的对象,并启动一个新线程来执行该对象的run方法,Executor接口并不严格要求实现如何创建、调度或管理线程,这些具体实现细节由它的实现类来定义。
  2. Executors类:这是一个工具类,提供了多种类型的线程池创建方法,例如newFixedThreadPool(创建固定大小的线程池)、newCachedThreadPool(创建可缓存的线程池)和newSingleThreadExecutor(创建单线程的线程池)等,这些线程池内部实际上都是实现了ExecutorService接口的对象。
  3. ExecutorService接口:这个接口扩展了Executor接口,添加了一些用于管理和控制线程执行的方法,例如:shutdown(平滑地关闭线程池)、shutdownNow(立即关闭线程池)、awaitTermination(等待所有任务执行完毕后再关闭线程池)等,此外,ExecutorService还提供了submit方法,可以接收Runnable或Callable对象,并返回一个Future对象来跟踪任务的执行状态。
  4. Future接口和Callable接口:这两个接口通常一起使用,Callable接口类似于Runnable接口,但它允许有返回值,并且可以抛出异常,Future接口表示异步计算的结果,它提供了检查计算是否完成的方法,以等待计算的完成,并检索计算的结果。

下面是一个使用执行器框架的简单示例,展示了如何创建一个固定大小的线程池,提交任务,并处理返回结果,如下代码:

import java.util.concurrent.ExecutorService;  
import java.util.concurrent.Executors;  
import java.util.concurrent.Future;  public class ExecutorFrameworkExample {  public static void main(String[] args) {  // 创建一个固定大小为3的线程池  ExecutorService executor = Executors.newFixedThreadPool(3);  // 提交任务并获取Future对象  Future<String> future = executor.submit(() -> {  // 模拟耗时操作  Thread.sleep(1000);  return "任务完成";  });  // 做其他事情...  // 获取任务结果(如果任务还未完成,会阻塞等待)  try {  String result = future.get();  System.out.println(result);  } catch (Exception e) {  e.printStackTrace();  }  // 关闭线程池  executor.shutdown();  }  
}

在实际应用中,通常不会在线程池刚提交任务后就立即关闭它,而是会等待所有任务都提交完毕后再关闭,此外,future.get()方法会阻塞当前线程直到任务完成,因此在需要等待任务完成的场景下应该谨慎使用,以避免死锁或不必要的线程阻塞。执行器框架通过提供这些高级抽象,使得开发者能够更专注于任务的逻辑,而不用过多关心线程的创建、调度和管理等底层细节,从而极大地简化了并发编程的复杂性。

Concurrent Collections(并发集合)

Concurrent Collections是设计用于支持并发编程的一组数据结构,在并发编程中,当多个线程同时访问和修改共享数据时,如果没有适当的同步措施,就可能导致数据不一致和其他并发问题,为了避免这些问题,Java提供了一些线程安全的集合类,称为并发集合。并发集合位于java.util.concurrent包中,它们通过内部实现来确保多个线程可以安全地并发访问这些集合,而无需在客户端代码中进行额外的同步,这些集合使用了各种复杂的算法和数据结构来最小化线程间的竞争,从而提供更高的吞吐量。

以下是一些常见的并发集合类:

  1. ConcurrentHashMap:这是一个线程安全的HashMap实现,它允许多个线程同时读写映射表,而不会相互阻塞,它通过分段锁或其他并发控制技术(如Java 8中的ConcurrentHashMap使用的CAS操作和同步控制)来实现高并发性。
  2. CopyOnWriteArrayList:这是一个线程安全的ArrayList实现,它通过在修改时复制底层数组来实现线程安全,读取操作不需要锁定,因为它们在内部数组的一个快照上执行,而写入操作则创建一个新的数组副本,修改它,然后原子地将其替换为当前数组。
  3. ConcurrentLinkedQueue:这是一个基于链接节点的无界线程安全队列,它按照FIFO(先进先出)原则对元素进行排序,多个线程可以安全地并发访问此队列,它使用高效的非阻塞算法来实现。
  4. ConcurrentSkipListMap和ConcurrentSkipListSet:这些是基于跳表(Skip List)数据结构实现的并发有序集合,它们提供了与TreeMap和TreeSet类似的功能,但是支持更高并发的读写操作。
  5. ConcurrentLinkedDeque:这是一个双端队列(Deque),支持在队列的两端进行高效的插入和移除操作,它是线程安全的,并且允许多个线程并发访问。
  6. BlockingQueue接口及其实现:这个接口定义了一个线程安全的队列,该队列在尝试检索元素但队列为空时,会阻塞检索线程,直到队列中有元素可用,同样,当队列已满时,尝试添加元素的线程也会被阻塞,直到队列中有可用空间。ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue和SynchronousQueue等是该接口的一些常用实现。

并发集合的使用场景主要是在多线程环境中,当需要一个数据结构来安全地共享数据时,使用这些集合可以减少编写和维护复杂的同步代码的需要,同时提高程序的性能和可伸缩性。

如下是使用ConcurrentHashMap代码示例,如下代码:

import java.util.concurrent.ConcurrentHashMap;  public class ConcurrentCollectionExample {  public static void main(String[] args) {  ConcurrentHashMap<String, Integer> map = new ConcurrentHashMap<>();  // 多个线程可以安全地并发访问这个 map  map.put("apple", 1);  map.put("banana", 2);  System.out.println(map.get("apple")); // 输出 1  }  
}

ConcurrentHashMap是一种高效的线程安全的哈希表实现,它允许多个线程并发地读写数据,而不需要额外的同步。

Atomic Variables(原子变量)

Atomic Variables(原子变量)是并发编程中用于实现线程安全的一种机制,原子变量提供了一种在多线程环境中安全地读取、修改和更新变量的方式,而不需要额外的同步措施。在并发编程中,当多个线程同时访问和修改共享变量时,如果没有适当的同步措施,可能会导致数据不一致和其他并发问题,为了解决这个问题,通常需要使用锁或其他同步机制来确保对变量的访问是原子的。

原子变量提供了一种更简洁、高效的方式来实现线程安全的数据更新,它们通过内部机制来确保对变量的操作是原子的,从而避免了显式的同步,原子变量通常在底层使用硬件支持或特殊的指令来实现原子操作,这使得它们在性能上优于传统的同步机制。

原子变量在Java中主要通过java.util.concurrent.atomic包中的类实现,例如AtomicInteger、AtomicLong、AtomicBoolean等,这些类提供了各种原子操作方法,如incrementAndGet()、decrementAndGet()、compareAndSet()等,这些方法对底层变量执行原子操作,并返回操作后的值。

如下是使用AtomicInteger的代码示例:

import java.util.concurrent.atomic.AtomicInteger;  public class AtomicVariableExample {  public static void main(String[] args) {  AtomicInteger atomicInt = new AtomicInteger(0);  // 多个线程可以安全地并发更新这个原子整数  int oldValue = atomicInt.getAndIncrement(); // 原子性地自增并返回旧值  System.out.println(oldValue); // 输出 0  int newValue = atomicInt.get(); // 获取当前值  System.out.println(newValue); // 输出 1  }  
}

AtomicInteger提供了一种原子性地更新整数值的方法,不需要使用synchronized关键字。

在这个示例中,increment()方法原子地增加计数器的值,而getCount()方法原子地获取计数器的值,由于这些操作是原子的,因此在多线程环境中使用AtomicInteger比使用普通的int变量更安全。原子变量在并发编程中非常有用,它们简化了线程间的同步,并提供了更高的性能。

Synchronizers(同步器)

Synchronizers(同步器)是Java并发编程中用于协调线程之间同步的组件,它们提供了一种机制,使线程能够等待、通知或限制其他线程的执行。主要包括:ReentrantLock、CountDownLatch、CyclicBarrier等,这些类为开发者提供了一系列高级同步工具,以便更好地控制线程之间的交互。

以下是几个常用的同步器:

  1. ReentrantLock:这是一个互斥体,类似于内置的synchronized关键字,但提供了更多的灵活性和功能,ReentrantLock可以重入,意味着一个线程可以多次获取同一个锁,而不会导致死锁,此外,ReentrantLock还提供了更细粒度的控制,例如尝试获取锁、定时获取锁等。
  2. CountDownLatch:这是一个同步辅助工具,它允许一个或多个线程等待其他线程完成一系列操作,CountDownLatch在初始化时会设置一个计数值,然后每个线程在完成其任务后调用countDown()方法减少计数值,当计数值减至0时,所有等待的线程都会被唤醒。
  3. CyclicBarrier:CyclicBarrier是一个同步辅助工具,它允许一组线程相互等待,直到所有线程都达到某个状态后再一起执行,CyclicBarrier在初始化时会设置一个屏障(barrier)的初始阶段数,每个线程在完成其任务后调用await()方法在屏障处等待,当阶段数减至0时,所有线程继续执行。
  4. Semaphore:Semaphore是一个计数信号量,它提供了对资源的精细控制,Semaphore维护了一个许可证计数,只有获得许可证的线程才能访问受保护的资源,当线程完成对资源的访问后,它会释放一个许可证,允许其他线程获取资源。

同步器提供了一种灵活的机制来协调线程之间的同步,它们可以帮助开发者避免死锁、竞态条件和其他并发问题。

如下是CountDownLatch代码示例:

import java.util.concurrent.CountDownLatch;  public class SynchronizerExample {  public static void main(String[] args) throws InterruptedException {  int numberOfThreads = 5;  CountDownLatch latch = new CountDownLatch(numberOfThreads);  for (int i = 0; i < numberOfThreads; i++) {  new Thread(() -> {  System.out.println("Thread " + Thread.currentThread().getId() + " is ready");  latch.countDown(); // 通知 CountDownLatch 线程已准备就绪  }).start();  }  latch.await(); // 等待所有线程准备就绪  System.out.println("All threads are ready");  }  
}

在上面代码汇总,使用 CountDownLatch 来同步多个线程,确保在所有线程都准备就绪之后再继续执行主线程。

关注我,每天学习互联网编程技术 - 程序员古德

END!

相关文章:

Java并发基础:一文讲清util.concurrent包的作用

java.util.concurrent包是 Java 中用于并发编程的重要工具集&#xff0c;提供了线程池、原子变量、并发集合、同步工具类、阻塞队列等一系列高级并发工具类&#xff0c;使用这些工具类可以极大地简化并发编程的难度&#xff0c;减少出错的可能性&#xff0c;提高程序的效率和可…...

C++PythonC# 三语言OpenCV从零开发(2):教程选择

文章目录 相关专栏前言视频教学和官方文档视频教程OpenCV 官方教程最终选择我的最终选择 相关专栏 C&Python&Csharp in OpenCV 前言 OpenCV 有官方的教程和简单的视频教程&#xff1a; OpenCV 官方教程 B站也有相关的视频教学 OpenCV4 C 快速入门视频30讲 - 系列合集 …...

【嘉立创EDA-PCB设计指南】3.网络表概念解读+板框绘制

前言&#xff1a;本文对网络表概念解读板框绘制&#xff08;确定PCB板子轮廓&#xff09; 网络表概念解读 在本专栏的上一篇文章【嘉立创EDA-PCB设计指南】2&#xff0c;将设计的原理图转为了PCB&#xff0c;在PCB界面下出现了所有的封装&#xff0c;以及所有的飞线属性&…...

nodejs前端项目的CI/CD实现(二)jenkins的容器化部署

一、背景 docker安装jenkins&#xff0c;可能你会反问&#xff0c;这太简单了&#xff0c;有什么好讲的。 我最近就接手了一个打包项目&#xff0c;它是一个nodejs的前端项目&#xff0c;jenkins已在容器里部署且运行OK。 但是&#xff0c;前端组很追求新技术&#xff0c;不…...

python爬虫案例分享

当然&#xff0c;我可以分享一个基本的Python爬虫示例。这个示例将使用Python的requests库来抓取网页内容&#xff0c;然后使用BeautifulSoup库来解析和提取信息。我们将构建一个简单的爬虫来从一个示例网站抓取标题。 Python爬虫示例 目标 提取某网站的标题。 需要的库 r…...

【CC++】为什么 scanf 函数在读取字符串时不需要用取地址运算符

在C语言中如何使用 scanf 读取字符串 在C语言中&#xff0c;字符串实际上是字符数组&#xff0c;所以我们可以使用scanf函数来读取字符串。但是&#xff0c;需要注意的是&#xff0c;scanf在读取字符串时会在遇到空格、制表符或换行符时停止。因此&#xff0c;它不能用于读取包…...

Linux dirs命令教程:dirs命令详解与实例(附实例详解和注意事项)

Linux dirs命令介绍 dirs这是一个内置在shell中的命令&#xff0c;用于显示当前被记忆的目录列表。默认状态下&#xff0c;它会按照stack的方式储存目录&#xff0c;即最后加入的目录会被首先列出来。 Linux dirs命令适用的Linux版本 dirs命令在所有常见的Linux发行版中都适…...

掌握虚拟化:PVE平台安装教程与技术解析

&#x1f31f;&#x1f30c; 欢迎来到知识与创意的殿堂 — 远见阁小民的世界&#xff01;&#x1f680; &#x1f31f;&#x1f9ed; 在这里&#xff0c;我们一起探索技术的奥秘&#xff0c;一起在知识的海洋中遨游。 &#x1f31f;&#x1f9ed; 在这里&#xff0c;每个错误都…...

Godot FileDialog无法访问其它盘符的文件

问题描述 使用Godot的FileDialog对象访问Windows系统的文件&#xff0c;例如&#xff1a; func _on_hud_sig_save():var dlg FileDialog.new()dlg.set_access(FileDialog.ACCESS_FILESYSTEM)dlg.set_file_mode(FileDialog.FILE_MODE_SAVE_FILE)add_child(dlg)dlg.popup_cent…...

TestNG注释

目录 TestNG注释列表 BeforeXXX和AfterXXX注释放在超类上时如何工作&#xff1f; 使用BeforeXXX和AfterXXX TestNG注释 TestNG是一个测试框架&#xff0c;旨在简化广泛的测试需求&#xff0c;从单元测试&#xff08;隔离测试一个类&#xff09;到集成测试&#xff08;测试由…...

数据预处理 matlab 数据质量评估

知乎 数据类型转换等 Mathworks 数据预处理 概念辨析 配对是同一批样本的前后比较&#xff0c;独立是两批不同样本的的比较 独立样本是指我们得到的样本是相互独立的。配对样本就是一个样本中的数据与另一个样本中的数据相对应的两个样本。配对样本可以消除由于样本指定的不公…...

对象存储, 开源MinIO docker-compose.yml 文件

文章目录 python SDK 文档地址&#xff1a;docker-compose.yml 文件控制台使用&#xff1a;应用服务中使用样例&#xff1a; python SDK 文档地址&#xff1a; https://min.io/docs/minio/linux/developers/python/API.html docker-compose.yml 文件 version: 3services:min…...

爬虫笔记(一):实战登录古诗文网站

需求&#xff1a;登录古诗文网站&#xff0c;账号&#xff0b;密码&#xff0b;图形验证码 第一&#xff1a;自己注册一个账号&#xff0b;密码哈 第二&#xff1a;图形验证码&#xff0c;需要一个打码平台&#xff08;充钱&#xff0c;超能力power&#xff01;&#xff09;或…...

适用于 Windows 11 的 12 个最佳免费 PDF 编辑器

除了绘图等基本功能外&#xff0c;一些适用于 Windows 11 的免费 PDF 编辑器还具有 AI、OCR 识别和书签等高级功能。 我们的列表包含易于立即下载的 PDF 编辑软件工具。 这些工具不仅可以帮助转换 PDF、编辑、上传、删除、裁剪、分割、提取等。 PDF 是指便携式文档格式&…...

力扣每日一练(24-1-18)

经验一&#xff1a;不要把问题想复杂 Python&#xff1a; min_price float(inf)max_profit 0for price in prices:min_price min(min_price, price)max_profit max(max_profit, price - min_price)return max_profit C#&#xff1a; public int MaxProfit(int[] prices) {i…...

MyBatis 使用报错:org.xml.sax.SAXParseException 元素内容必须由格式正确的字符数据或标记组成

文章目录 前言问题分析解决方案方案一&#xff1a;使用 CDATA 区块&#xff0c;依然使用 “ > ” 或者 “ < ”方案二&#xff1a;使用转义字符 个人简介 前言 今天在使用 MyBatis 时出现报错&#xff1a; Caused by: org.xml.sax.SAXParseException: 元素内容必须由格式…...

PDF.js - 免费开源的 JavaScript 读取、显示 PDF 文档的工具库,由 Mozilla 开发并且持续维护

最近新项目需要处理 PDF&#xff0c;研究了 PDf.js 之后觉得很不错&#xff0c;于是写篇文章推荐给大家。 PDF.js 的功能和它的名字一样简单&#xff0c;是一个使用 HTML5 技术来让前端网页支持读取、解析和显示 PDF 文档的 JS 工具库。这个项目由大名鼎鼎的 Mozilla 组织开发…...

UI开发布局-HarmonyOS应用UI开发布局

UI页面的构建不用再像Android开发过程中在.xml文件中书写&#xff0c;可直接在页面上使用声明式UI的方式按照布局进行排列&#xff0c;构建应用的页面。 如下代码使用Row、Column构建一个页面布局&#xff0c;在页面布局中添加组件Text、Button&#xff0c;共同构成页面&#…...

大数据开发之Hadoop(完整版+练习)

第 1 章&#xff1a;Hadoop概述 1.1 Hadoop是什么 1、Hadoop是一个由Apache基金会所开发的分布式系统基础架构。 2、主要解决&#xff0c;海量数据的存储和海量数据的分析计算问题。 3、Hadoop通常是指一个更广泛的概念-Hadoop生态圈 1.2 Hadoop优势&#xff08;4高&#xf…...

Redis与DB数据一致性-个人总结

缓存读写策略: Cache-Aside Pattern 读缓存: 先查询缓存&#xff0c;存在则返回, 如果不存在则查询DB, 再塞回缓存中,最后返回结果. 写缓存: 更新完成DB之后&#xff0c;删除缓存. 适合场景: 读比较多的场景&#xff0c;更新比较少的场景. 像我们工作当中&#…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

快速排序算法改进:随机快排-荷兰国旗划分详解

随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...