当前位置: 首页 > news >正文

day01 深度学习介绍

目录

1.1深度学习介绍

1.2神经网络NN

1、概念:

2、神经元

3、(单层)神经网络

4、感知机(两层)

5、多层神经网络

6、激活函数

(1)饱和与非饱和激活函数

(2)饱和激活函数

① Sigmoid激活函数

② tanh激活函数

(3)非饱和激活函数

① ⚠️ReLU激活函数

② Leaky Relu激活函数

③ ELU激活函数

1.3pytorch安装+入门

1、pytorch安装

2、Tensor张量

3、张量的创建方法

4、张量的方法和属性

5、tensor的数据类型

6、tensor的其他操作

(1)tensor 和 tensor相加。

(2)tensor和数字操作

(3)CUDA中的tensor

1.4梯度下降和反向传播

1、梯度

2、梯度下降

3、常见的导数的计算

4、反向传播

5、使用Pytorch完成线性回归

6、手动实现线性回归。

7、nn.Module 


1.1深度学习介绍

1、深度学习

        机器学习的分支。人工神经网络为基础,对数据的特征进行学习的方法。

2、机器学习和深度学习的区别:

【特征抽取】:

  • 机器学习:人工的特征抽取。
  • 深度学习:自动的进行特征抽取。

【数据量】:

  • 机器学习:数据少,效果不是很好
  • 深度学习:数据多,效果更好

3、深度学习应用场景:

  • 图像识别:物体识别、场景识别、人脸检测跟踪、人脸身份认证。
  • 自然语言处理技术:机器翻译、文本识别、聊天对话。
  • 语音技术:语音识别

4、深度学习框架:pytorch

  • 目前企业常见的深度学习框架有很多:TensorFlow、Caffe2、Theano、Pytorch、Chainer、DyNet、MXNet等。

1.2神经网络NN

1、概念:

又称为人工神经网络ANN(Artificial Netural Network)。简称神经网络(NN)或类神经网络。模拟生物的神经系统,对函数进行估计或近似。

2、神经元

概念:神经网络中的基础单元,相互连接,组成神经网络。

其中:

①a1、a2... an为各个输入的分量。

②w1、w2...wn为各个输入分量对应的权重参数。

③b为偏置

④f为激活函数。常见的激活函数有tanh、sigmoid、relu

⑤t为神经元的输出。

使用数学公式表示:t = f(W^T A + b)      其中:   W^{T}表示W的转置

对公式的理解:输出 = 激活函数( 权重*输入求和 + 偏置)

可见:一个神经元的功能是求得输入向量与权向量的内积后,经一个非线性传递函数得到一个标量结果。

3、(单层)神经网络

最简单的神经网络的形式。

4、感知机(两层)

  • 两层的神经网络。
  • 简单的二分类的模型,给定阈值,判断数据属于哪一部分。

5、多层神经网络

  • 输入层、
  • 输出层、
  • 隐藏层:可以有多层,每一层的神经元的个数可以不确定。

全连接层:当前层和前一层每个神经元相互连接,我们称当前这一层为全连接层。
即:第N层和第N-1层中的神经元两两之间都有连接。

  • 进行的是 y = Wx + b

6、激活函数

作用:

  • 增加模型的非线性分割能力。
  • 提高模型稳健性
  • 缓解梯度消失问题
  • 加速模型收敛等。

(1)饱和与非饱和激活函数

相对于饱和激活函数,使用非饱和激活函数的优势在于:

  • 非饱和激活函数能解决深度神经网络(层数非常多)带来的梯度消失问题。
  • 使用非饱和激活函数能加快收敛速度。

(2)饱和激活函数

① Sigmoid激活函数

数学表达式为:f (x) = \frac{1}{1+e^{-x}}

求导:{f}'(x)= f(x)(1-f(x))

结果:输出值范围为(0,1)之间的实数。

② tanh激活函数

数学表达式为:f(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

实际上,Tanh函数是 sigmoid 的变形:\tan h(x) = 2sigmoid(2x) - 1

tanh是“零为中心”的。

结果:输出值范围为(-1,1)之间的实数。

(3)非饱和激活函数

① ⚠️ReLU激活函数

数学表达式为:f(x) = max(0,x)

使用场景:

  • ReLU解决了梯度消失的问题,当输入值为正时,神经元不会饱和
  • 由于ReLU线性、非饱和的性质,在SGD中能够快速收敛
  • 计算复杂度低,不需要进行指数运算

缺点:

  • 与Sigmoid一样,其输出不是以0为中心的

② Leaky Relu激活函数

数学表达式为:f(x) = max(ax,x)

什么情况下适合使用Leaky ReLU?

  • 解决了ReLU输入值为负时神经元出现的死亡的问题
  • Leaky ReLU线性、非饱和的性质,在SGD中能够快速收敛
  • 计算复杂度低,不需要进行指数运算
③ ELU激活函数

数学表达式为:

1.3pytorch安装+入门

1、pytorch安装

2、Tensor张量

各种数值数据称为张量。

0阶张量:常数 scaler

1阶张量:向量vector

2阶张量:矩阵matrix

3阶张量:...

3、张量的创建方法

打开jupyter,使用命令jupyter notebook

(1)使用python中的列表或者序列创建tensor

(2)使用numpy中的数组创建tensor

(3)使用torcch的api创建tensor

①torch.empty(3,4) 创建3行4列的空的tensor,会用无用数据进行填充。

②torch.ones(3,4) 创建3行4列的全为1 的tensor

③torch.zeros(3,4) 创建3行4列的全为0的tensor


 

④torch.rand(3,4) 创建3行4列的随机值的tensor,随机值的区间是[0,1)

⑤torch.randint( low = 0,high = 10, size = [3,4]) 创建3行4列的随机整数的tensor,随机值的区间是[ low,high)

⑥torch.randn([3,4]) 创建3行4列的随机数的tensor ,随机值的分布均值为0,方差为1

(这里的randn ,n表示normal)

4、张量的方法和属性

(1)获取tensor中的数据(当tensor中只有一个元素可用):tensor.item( )

(2)转化为numpy数组

(3)获取形状:tensor.size()
tensor.size(0)  获取第一个维度的形状

(4)形状改变:tensor.view((3,4)) 。类似numpy中的reshape,是一种浅拷贝,仅仅是形状发生改变。

(5)获取维数:tensor.dim()


(6)获取最大值:tensor.max()

(7)转置:tensor.t()   二维

高维:tensor.transpose(1,2)  将第一维度和第二维度交换、tensor.permute(0,2,1)

(8)获取tensor[1,3] 获取tensor中第一行第三列的值。(行和列的索引都是从0开始


(9)tensor[1,3] 对tensor中第一行,第散列的位置进行赋值。

(10)tensor切片:

图片所示,取了第一列。

5、tensor的数据类型

(1)获取tensor 的数据类型:tensor.dtype

(2)创建数据的时候指定类型

(3)类型的修改

6、tensor的其他操作

(1)tensor 和 tensor相加。

x.add(y)  不会直接修改x的值。

x.add_(y) 会直接修改x的值。⚠️


(2)tensor和数字操作


(3)CUDA中的tensor

通过.to 方法能够把一个tensor转移到另外一个设备(比如从CPU转到GPU)

# 实例化device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')# 把tensor转化为CUDA支持的tensor,或者cpu支持的tensor
tensor.to(device)

1.4梯度下降和反向传播

1、梯度

概念:梯度是一个向量,导数+变化最快的方向(学习的前进方向)

回顾下机器学习:

       ① 收集数据x,构建机器学习模型f,得到f(x,w) = Ypredict

        ②判断模型好坏的方法:

loss = (Ypredict - Ytrue)^2   ( 回归损失)
loss = Ytrue · log(Yredict)    (分类损失)

        ③目标:通过调整(学习)参数w,尽可能的降低loss。

2、梯度下降

算出梯度、

3、常见的导数的计算

链式法则、求偏导数、

4、反向传播

(1)前向传播:将训练集数据输入到ANN的输入层,经过隐藏层,最后到达输出层并输出结果。【输入层—隐藏层–输出层】

(2)反向传播:由于ANN的输入结果与输出结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层。【输出层–隐藏层–输入层】

(3)权重更新:在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。

5、使用Pytorch完成线性回归

(1)tensor(data, requires_grad = True)

① 该tensor后续会被计算梯度、tensor所有的操作都会被记录在grade_in 

② 当requires_grad = True时,tensor.data 和 tensor不相同。否则,得到是相同的结果。

(2)with torch.no_grad()

其中的操作不会被跟踪

(3)反向传播:output.backward()

(4)获取某个参数的梯度:x.grad   累加梯度,每次反向传播之前需要先把梯度置为0之后。

6、手动实现线性回归。

假设基础模型y=wx+b , 其中w和b均为参数,我们使用y = 3x+0.8 来构造数据x,y,所以最后通过模型应该能够得出w和b应该分别接近3和0.8。

(1)准备数据(2)计算预测值
(3)计算损失,把参数的梯度置为0,进行反向传播(4)更新参数

import torch
import matplotlib.pyplot as plt
learning_rate = 0.01  # 定义一个学习率# 1、准备数据
"""
y = wx + b
y = 3x + 0.8
"""
x = torch.rand([100, 1])
y_true = x*3 + 0.8# 2、通过模型计算 y_project
w = torch.rand([1, 1], requires_grad=True)
b = torch.tensor(0, requires_grad=True, dtype=torch.float32)# 4、通过循环,反向传播,更新参数
for i in range(500):# 3、计算lossy_predict = torch.matmul(x, w) + bloss = (y_true - y_predict).pow(2).mean()  # 平方,再均值if w.grad is not None:     # 将梯度置为0w.grad.data.zero_()if b.grad is not None:b.grad.data.zero_()loss.backward()   # 反向传播w.data = w.data - learning_rate * w.gradb.data = b.data - learning_rate * b.gradprint(f"w:{w.item()},b:{b.item()},loss:{loss.item()}")# 画图
plt.figure(figsize=(20, 8))
plt.scatter(x.numpy().reshape(-1), y_true.numpy().reshape(-1))
y_predict = torch.matmul(x, w) + b
plt.plot(x.numpy().reshape(-1), y_predict.detach().reshape(-1), c='r')
plt.show()

7、nn.Module 

nn.Module 是torch.nn提供的一个类,是pytorch 中我们自定义网络的一个基类,在这个类中定义了很多有用的方法,让我们在继承这个类定义网络的时候非常简单。

相关文章:

day01 深度学习介绍

目录 1.1深度学习介绍 1.2神经网络NN 1、概念: 2、神经元 3、(单层)神经网络 4、感知机(两层) 5、多层神经网络 6、激活函数 (1)饱和与非饱和激活函数 (2)饱和激活…...

k8s 部署 Nginx 并代理到tomcat

一、已有信息 [rootmaster nginx]# kubectl get nodes -o wide [rootmaster nginx]# kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 2…...

医学图像的数据增强技术 --- 切割-拼接数据增强(CS-DA)

医学图像的新型数据增强技术 CS-DA 核心思想自然图像和医学图像之间的关键差异CS-DA 步骤确定增强后的数据数量 代码复现 CS-DA 核心思想 论文链接&#xff1a;https://arxiv.org/ftp/arxiv/papers/2210/2210.09099.pdf 大多数用于医学分割的数据增强技术最初是在自然图像上开…...

git克隆/拉取报错过早的文件结束符(EOF)的原因及解决

近期使用git拉取仓库的时候&#xff0c;拉取了好几次都不行&#xff0c;总是反馈说过早的文件结束符 总是这样&#xff0c;当然我的报错信息并没有描述完整&#xff0c;因为在我检索此类问题的时候&#xff0c;我发现有好多种所谓的过早的文件结束符这样的报错&#xff0c;但是…...

【ARM 嵌入式 编译系列 2.5 -- GCC 编译参数学习 --specs=nano.specs选项 】

请阅读【嵌入式开发学习必备专栏 之 ARM GCC 编译专栏】 文章目录 概述nano.specs示例使用注意事项问题总结概述 ARM 工具链 (arm-none-eabi-) 包括了一个叫作 --specs 的编译器和链接器选项,这个选项允许用户指定一个或多个 “specs” 文件,以影响编译或链接阶段的行为。Sp…...

C语言大师(5)构造函数和析构函数

引言 在C的面向对象编程中&#xff0c;构造函数和析构函数扮演着至关重要的角色。它们分别管理对象的初始化和销毁过程&#xff0c;确保资源的有效分配和释放。了解这些函数如何工作&#xff0c;对于编写高效和可靠的C程序至关重要。 1. 构造函数 构造函数在每次创建类的新对…...

安全审查常见要求

一、是否有密码复杂度策略、是否有密码有效期 1&#xff09;密码长度至少8位&#xff1b; 2&#xff09;要求用户密码必须包含大小写字母、数字、特殊字符 3&#xff09;避免常见密码 123456&#xff0c;qwerty, password; 4) 强制用户定期修改密码&#xff1b; 5&#x…...

最新 生成pdf文字和表格

生成pdf文字和表格 先看效果 介绍 java项目&#xff0c;使用apache的pdfbox工具&#xff0c;可分页&#xff0c;自定义列 依赖 <dependency><groupId>org.apache.pdfbox</groupId><artifactId>pdfbox</artifactId><version>2.0.22<…...

安全基础~攻防特性3

文章目录 SSTI(模板注入)1. 简介2. 成因3. 常见框架存在注入4. 判断存在SSTI SSTI(模板注入) 1. 简介 (Server-Side Template Injection) 服务端模板注入 1、使用框架&#xff08;MVC的模式&#xff09;&#xff0c;如python的flask&#xff0c;php的tp&#xff0c;java的sp…...

Windows7关闭谷歌浏览器提示“若要接收后续 Google Chrome 更新,您需使用 Windows 10 或更高版本”的方法

背景 电脑比较老&#xff0c;系统一直没有更新&#xff0c;硬件和软件版本如下&#xff1a; 操作系统版本&#xff1a;Windows7 企业版 谷歌浏览器版本&#xff1a;109.0.5414.120&#xff08;正式版本&#xff09; &#xff08;64 位&#xff09; 该版本的谷歌浏览器是支持…...

[一]ffmpeg音视频解码

[一]ffmpeg音视频解码 一.编译ffmpeg1.安装vmware虚拟机2.vmware虚拟机安装linux操作系统3.安装ftp和fshell软件4.在Ubuntu&#xff08;Linux&#xff09;中编译Android平台的FFmpeg&#xff08; arm和x86 &#xff09;5.解压FFmpeg6.Android编译脚本&#xff08;1&#xff09;…...

k8s-认证授权 14

Kubernetes的认证授权分为认证&#xff08;鉴定用户身份&#xff09;、授权&#xff08;操作权限许可鉴别&#xff09;、准入控制&#xff08;资源对象操作时实现更精细的许可检查&#xff09;三个阶段。 Authentication&#xff08;认证&#xff09; 认证方式现共有8种&…...

在全志H616核桃派上实现USB摄像头的OpenCV颜色检测

在给核桃派开发板用OpenCV读取图像并显示到pyqt5的窗口上并加入颜色检测功能&#xff0c;尝试将图像中所有蓝色的东西都用一个框标记出来。 颜色检测核心api 按照惯例&#xff0c;先要介绍一下opencv中常用的hsv像素格式。颜色还是那个颜色&#xff0c;只是描述颜色用的参数变…...

mac安装部署gitbook教程

mac安装部署gitbook教程 前言一、安装准备二、GitBook安装三、项目初始化 前言 一些自己实际操作的记录。 一、安装准备 Node.js gitbook基于Node.js&#xff0c;所以需要提前安装。 下载地址&#xff1a;https://nodejs.org/en/&#xff0c;可以下载比较新的版本。(但我的建议…...

有关软件测试的,任何时间都可以,软件测试主要服务项目:测试用例 报告 计划

有关软件测试的&#xff0c;任何时间都可以&#xff0c;软件测试主要服务项目&#xff1a; 1. 测试用例 2. 测试报告 3. 测试计划 4. 白盒测试 5. 黑盒测试 6. 接口测试 7.自动…...

快乐过寒假,安全不放假

寒假将至&#xff0c;春节即来&#xff0c;为了使孩子们过上一个平安、快乐、文明、祥和、健康、有益的寒假和春节&#xff0c;在共青团永宁县委员会、永宁县望洪镇人民政府的大力支持下&#xff0c;在永宁新华中心村校外少工委的积极配合下&#xff0c;1月20日下午宁夏妇女儿童…...

qt学习:模仿qq界面+添加资源+无边框界面+修改样式

目录 一,创建登录ui界面类 LoginWidget 二,添加图片资源 三,通过样式的方法将图片设置成圆圈的背景 四,新建登录后的ui界面 MWindow 简陋的就可以,因为只为了学习,可以自己补充 五,新建三个嵌套ui界面类,ChatWidget聊天界面 FriendWiidget好友界面 CollectW…...

【Linux】基本指令收尾

文章目录 日期查找打包压缩系统信息Linux和Windows互传文件 日期 这篇是基本指令的收尾了&#xff0c;还有几个基本指令我们需要说一下 首先是Date&#xff0c;它是用来显示时间和日期 直接输入date的话显示是有点不好看的&#xff0c;所以我们可以根据自己的喜欢加上分隔符&…...

精准核酸检测 - 华为OD统一考试

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 100分 题解&#xff1a; Java / Python / C 题目描述 为了达到新冠疫情精准防控的需要&#xff0c;为了避免全员核酸检测带来的浪费&#xff0c;需要精准圈定可能被感染的人群。 现在根据传染病流调以及大数据分析&a…...

LINUX文件fd(file descriptor)文件描述符

目录 1.文件接口 1.1open 1.2C语言为什么要对open进行封装 2.fd demo代码 第一个问题 第二个问题 打开文件流程 引言&#xff1a;在学习C语言的时候&#xff0c;我们见过很多的文件的接口&#xff0c;例如fopen&#xff0c;fwrite&#xff0c;fclose等等&#xff0c;但…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...

LangChain【6】之输出解析器:结构化LLM响应的关键工具

文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器&#xff1f;1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...

以太网PHY布局布线指南

1. 简介 对于以太网布局布线遵循以下准则很重要&#xff0c;因为这将有助于减少信号发射&#xff0c;最大程度地减少噪声&#xff0c;确保器件作用&#xff0c;最大程度地减少泄漏并提高信号质量。 2. PHY设计准则 2.1 DRC错误检查 首先检查DRC规则是否设置正确&#xff0c;然…...