深度学习(3)--递归神经网络(RNN)和词向量模型Word2Vec
目录
一.递归神经网络基础概念
二.自然语言处理-词向量模型Word2Vec
2.1.词向量模型
2.2.常用模型对比
2.3.负采样方案
2.4.词向量训练过程
一.递归神经网络基础概念
递归神经网络(Recursive Neural Network, RNN)可以解决有时间序列的问题,处理诸如树、图这样的递归结构。
CNN主要应用在计算机视觉CV中,RNN主要应用在自然语言处理NLP中。
1.h0,h1.....ht对应的是不同输入得到的中间结果。
2.处理自然语言I am GodFishhh or AFish:
则对应的输入为X0 -- I,X1 -- am,X2 -- GodFishhh,X3 -- or,X4 -- AFish,再通过一定的方法将自然语言输入转换为计算机能够理解的形式(例如Word2Vec方法,将文本中的词语转换为向量形式)。
3.RNN网络最后输出的结果会考虑之前所有的中间结果,记录的数据太多可能会产生误差或者错误。
LSTM长短记忆网络是一种特殊的递归神经网络,可以解决上述记录数据太多的问题:
在普通的RNN中,t-1时刻得到的输出值h(t-1)会被简单的复制到t时刻,并与t时刻的输入值X(t)整合再经过一个tanh函数后形成输出。
而在LSTM中,对于t-1时刻得到的输出值h(t-1)会有更加复杂的操作。
二.自然语言处理-词向量模型Word2Vec
2.1.词向量模型
将文本向量化后,就可以通过不同方法(欧氏距离、曼哈顿距离、切比雪夫距离、余弦相似度等)来计算两个向量之间的相似度。
同时通常来说,向量的维度越高,能够提供的信息也越多,因此所计算出的相似度的可靠性也就越高,匹配的正确性也就越高(常用向量维度为50~300)
而词向量模型Word2Vec的作用就是把词转化为向量
例如如下训练好的词向量,将每一个词都表示为50维的向量:
通过比对不同词向量的热度图可以发现,有相关特性的词在热度图上较为相似,而无明显相关特性的词在热度图上则差异较大:
在词向量模型中,输入可以是多个词,而在模型的最后一层中连接了SoftMax,所以会输出所有词可能是下一个词的概率。
而文字的输入则是通过一个embeddings层(词嵌入层)来解决。在神经网络初始化时,会随机初始化一个N×K的矩阵,其中N为词典的大小,K为词向量的维度数。初始的词嵌入曾是随机生成的,通过反向传播进行更新优化。
2.2.常用模型对比
一切具有正常逻辑的语句都可以作为训练数据。
(1).CBOW模型
CBOW的全称是continuous bag of words(连续词袋模型)。其本质也是通过context word(背景词)来预测target word(目标词)。
该模型的输入为上下文,输出为该上下文中间的词汇:
(2).Skip-gram模型
该模型与CBOW模型相反,模型的输入为一个词汇,而输出是该词汇的上下文:
示例:
2.3.负采样方案
如下图所示,将构建好的数据集丢给词模型进行训练:
发现最后一层SoftMax的计算在语料库很大的情况下会非常耗时。
因此,有一种改进方法是将此时的输入和输出都作为输入值,做一个二分类问题,如果两个输入是邻居则输出1,不是邻居则输出0。(eg.传统模型中,输入not,希望输出是thou,但需要经过SoftMax层计算出所有词可能作为下一个词的概率,但此时则是将not和thou均作为输入,如果相邻则输出1,不相邻则输出0)
但此时的问题在于,训练集本身就是由上下文构建出来的,所以训练集构建出来的输出targer均为1,无法进行较好的训练。
改进方案:加入一些负样本,即不相邻的两个输入词,输出的target值为0.(一般负样本个数为5个左右)
2.4.词向量训练过程
(1).初始化词向量矩阵
(2).训练模型
通过神经网络反向传播来训练模型,与普通的训练模型只更新权重值不同,此时不光会更新权重参数矩阵,还会更新输入数据。
相关文章:

深度学习(3)--递归神经网络(RNN)和词向量模型Word2Vec
目录 一.递归神经网络基础概念 二.自然语言处理-词向量模型Word2Vec 2.1.词向量模型 2.2.常用模型对比 2.3.负采样方案 2.4.词向量训练过程 一.递归神经网络基础概念 递归神经网络(Recursive Neural Network, RNN)可以解决有时间序列的问题,处理诸如树、图这样…...

【江科大】STM32:中断系统(理论)
文章目录 中断系统为什么要使用中断中断优先级中断嵌套STM32的中断系统如何管理这些中断NVIC的结构 优先级窗口看门狗(WWDG):外部中断模块的特性&#…...

JAVA 学习 面试(六)数据类型与方法
数据类型 基本数据类型 为什么float3.4报错 3.4 默认是浮点double类型的,如果赋值给float是向下转型,会出现精度缺失,,需要强制转换 Switch支持的数据类型? byte、short、int、char 、 enum 、 String 基本类型与包…...
Java 一个数组集合List<People> 赋值给另一个数组集合List<NewPeople> ,两个数组集合属性部分一致。
Java 一个数组集合List 赋值给另一个数组集合List ,两个数组集合属性部分一致。 下面是一个Demo, 具体要根据自己的业务调整。 import java.util.ArrayList; import java.util.List;class People {private String name;private int age;private String address;publ…...

基于神经网络的电力系统的负荷预测
一、背景介绍: 电力系统负荷预测是生产部门的重要工作之一,通过准确的负荷预测,可以经济合理地安排机组的启停、减少旋转备用容量、合理安排检修计划、降低发电成本和提高经济效益。负荷预测按预测的时间可以分为长期、中期和短期负荷预测。…...

OpenCV第 1 课 计算机视觉和 OpenCV 介绍
文章目录 第 1 课 计算机视觉和 OpenCV 介绍1.机器是如何“看”的2.机器视觉技术的常见应用3.图像识别介绍4. 图像识别技术的常见应用5.OpenCV 介绍6.图像在计算机中的存储形式 第 1 课 计算机视觉和 OpenCV 介绍 1.机器是如何“看”的 我们人类可以通过眼睛看到五颜六色的世界…...
C++面试:stl的栈和队列介绍
目录 栈 栈(stack)的声明: push(): 将元素推入栈顶 pop(): 弹出栈顶元素 top(): 访问栈顶元素,但不弹出 empty(): 检查栈是否为空 size(): 返回栈中元素的数量 …...
从0开始学习C++ 第十二课:指针强化
第十二课:指针强化 学习目标: 理解常量指针与指针常量的区别。学习如何使用函数指针。掌握指针与数组的高级使用技巧。 学习内容: 常量指针与指针常量 概念: 常量指针是一个指向常量的指针,这意味着不能通过这个指针…...
mongodb和python交互
1. mongdb和python交互的模块 pymongo 提供了mongdb和python交互的所有方法 安装方式: pip install pymongo 2. 使用pymongo 2.1 导入pymongo并选择要操作的集合 数据库和集合能够自动创建 2.1.1 无需权限认证的方式创建连接对象以及集合操作对象 from pymongo import Mong…...

力扣279. 完全平方数
动态规划 思路: 假设 dp[i] 为最少组成数 i 的平方数个数;则其上一个状态为 dp[i - j^2] 1,1 为 j^2: 即 i 的最少完全平方数 i - j^2 的最少完全平方数 1,其中 j^2 < i 为最接近 i 的平方数;初始值…...

【C++】list容器功能模拟实现
介绍 上一次介绍了list队容器的迭代器模拟,这次模拟实现list的简单功能,尤其要注意构造函数、析构函数、以及赋值运算符重载的实现。 list容器需要接纳所有类型的数据,因此,结构设置与迭代器设置同理,需要引入结点&…...

linux 安装ffmpeg
一、下载 ffmpeg-4.3.1 下载地址:链接:https://pan.baidu.com/s/1xbkpHDfIWSCbHFGJJHSQcA 提取码:3eil 二、上传到服务器root目录下 三、给ffmpeg-4.3.1 读写权限 chmod -R 777 /root/ffmpeg-4.3.1 四、创建软连接 1.进入/bin 目录 2.…...

激光雷达行业梳理2-产业链、公司、未来展望
四、产业链及竞争格局 激光雷达产业链可以分为上游(光学和电子元器件)、中游(集成激光雷达)、下游(不同应用场景)。其中 上游即激光发射、激光接收、扫描系统和信息处理四大部分,主要包括激光器…...

Java 设计者模式以及与Spring关系(四) 代理模式
目录 简介: 23设计者模式以及重点模式 代理模式(Proxy Pattern) 静态代理示例 spring中应用 动态代理 1.基于JDK的动态代理 target.getClass().getInterfaces()作用 内名内部类写法(更简洁,但不推荐) 2.基于CGLIB实现 spring中应用 …...

PHP编程实践:实际商品价格数据采集
引言 在电子商务领域,对商品价格进行数据采集和对比是一项常见的需求。本文将介绍如何使用PHP编程语言实现对1688和淘宝商品价格数据的采集和对比,帮助读者了解实际的编程实践过程。 一、数据采集原理 数据采集是指从互联网上获取数据的过程ÿ…...

有效防范网络风险的关键措施
在数字化时代,企业面临着日益复杂和频繁的网络风险。提高员工的网络安全意识是防范网络威胁的关键一步。本文将探讨企业在提升网络安全意识方面可以采取的措施,以有效预防潜在的网络风险。 1. 开展网络安全培训:企业应定期组织网络安全培训&…...
Spring Boot整合webservice
Spring Boot整合webservice 前言1.整合依赖2.建立暴露接口2.实现类 3.发布服务4.查看打完收工! 前言 工作中遇到的问题,由于下游系统属于第三方系统,使用的是soap webservice,同时也在开发,虽然也发布了一套webservic…...

Qt拖拽事件简单实现
1.相关说明 重写resizeEvent(这个按需重写)、dragEnterEvent(拖拽事件函数)、dropEvent(放下事件函数),可以将本地图片拖拽到label标签中 2.相关界面 3.相关代码 #include "widget.h" #include "ui_widget.h" #include <QDragEnterEvent>…...

上门回收小程序,打造回收新模式
近年来,我国一直秉持着环保绿色的发展理念,为了减少资源浪费,旧物回收成为了人们处理废弃物品的方式。目前,我国回收市场规模大约能达到3.58亿元,在我国经济的稳定增长和环保意识的提高下,回收市场规模还将…...

unity项目《样板间展示》开发:火焰和UI设计
第二章:火焰和UI设计 前言一、火焰模型管理灶台火焰壁炉火焰 二、电视机播放三、UI设计结语 前言 这次带大家从0到1做一个unity项目:《样板间展示》。 顾名思义,项目内容是展示样板间,即玩家可以与房间中的物体、家具进行交互。 至…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...