2024年美赛数学建模思路 - 案例:异常检测
文章目录
- 赛题思路
- 一、简介 -- 关于异常检测
- 异常检测
- 监督学习
- 二、异常检测算法
- 2. 箱线图分析
- 3. 基于距离/密度
- 4. 基于划分思想
- 建模资料
赛题思路
(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog
一、简介 – 关于异常检测
异常检测(outlier detection)在以下场景:
- 数据预处理
- 病毒木马检测
- 工业制造产品检测
- 网络流量检测
等等,有着重要的作用。由于在以上场景中,异常的数据量都是很少的一部分,因此诸如:SVM、逻辑回归等分类算法,都不适用,因为:
监督学习算法适用于有大量的正向样本,也有大量的负向样本,有足够的样本让算法去学习其特征,且未来新出现的样本与训练样本分布一致。
以下是异常检测和监督学习相关算法的适用范围:
异常检测
- 信用卡诈骗
- 制造业产品异常检
- 数据中心机器异常检
- 入侵检测
监督学习
- 垃圾邮件识别
- 新闻分类
二、异常检测算法


import tushare
from matplotlib import pyplot as pltdf = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()
近三个月,成交量大于200000就可以认为发生了异常(天量,嗯,要注意风险了……)


2. 箱线图分析
import tushare
from matplotlib import pyplot as pltdf = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()

大体可以知道,该股票在成交量少于20000,或者成交量大于80000,就应该提高警惕啦!
3. 基于距离/密度
典型的算法是:“局部异常因子算法-Local Outlier Factor”,该算法通过引入“k-distance,第k距离”、“k-distance neighborhood,第k距离邻域”、“reach-distance,可达距离”、以及“local reachability density,局部可达密度 ”和“local outlier factor,局部离群因子”,来发现异常点。
用视觉直观的感受一下,如图2,对于C1集合的点,整体间距,密度,分散情况较为均匀一致,可以认为是同一簇;对于C2集合的点,同样可认为是一簇。o1、o2点相对孤立,可以认为是异常点或离散点。现在的问题是,如何实现算法的通用性,可以满足C1和C2这种密度分散情况迥异的集合的异常点识别。LOF可以实现我们的目标。


4. 基于划分思想
典型的算法是 “孤立森林,Isolation Forest”,其思想是:
假设我们用一个随机超平面来切割(split)数据空间(data space), 切一次可以生成两个子空间(想象拿刀切蛋糕一分为二)。之后我们再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。直观上来讲,我们可以发现那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间了。
这个的算法流程即是使用超平面分割子空间,然后建立类似的二叉树的过程:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForestrng = np.random.RandomState(42)# Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-8, high=8, size=(20, 2))# fit the model
clf = IsolationForest(max_samples=100*2, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-8, 8, 50), np.linspace(-8, 8, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red')
plt.axis('tight')
plt.xlim((-8, 8))
plt.ylim((-8, 8))
plt.legend([b1, b2, c],["training observations","new regular observations", "new abnormal observations"],loc="upper left")
plt.show()

建模资料
资料分享: 最强建模资料


相关文章:
2024年美赛数学建模思路 - 案例:异常检测
文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…...
一键完成,批量转换HTML为PDF格式的方法,提升办公效率
在当今数字化的时代,HTML和PDF已经成为两种最常用的文件格式。HTML用于网页内容的展示,而PDF则以其高度的可读性和不依赖于平台的特性,成为文档分享和传播的首选格式。然而,在办公环境中,我们经常需要在这两种格式之间…...
【重点问题】攻击面发现及管理
Q1:在使用长亭云图极速版时,是否需要增设白名单扫描节点? 长亭云图极速版高级网络安全产品基于一种理念,即攻击面发现是一个不断变换且需要持续对抗的过程。在理想的情况下,用户应当在所有预置防护设施发挥作用的环境…...
UE4外包团队:国外使用UE4虚幻引擎制作的十个知名游戏
1.俄罗斯方块效果(任天堂 Switch、PlayStation 4、PC、Xbox) 2.耀西的手工世界(任天堂 Switch) 3. Final Fantasy 7 Remake Intergrade (PlayStation, PC) 4.《堡垒之夜》(PC、Nintendo Switch、PlayStation、Xb…...
解决springboot+mybatisplus返回时间格式带T
原因:我service实现类的代码是 Overridepublic Map<String, Object> queryDictPage(Map<String, Object> queryMap) {Map<String,Object> map new HashMap<>();QueryWrapper<Dict> wrapper new QueryWrapper<>(); // …...
纯命令行在Ubuntu中安装qemu的ubuntu虚拟机,成功备忘
信息总体还算完整,有个别软件更新了名字,所以在这备忘一下 1. 验证kvm是否支持 ________________________________________________________________ $ grep vmx /proc/cpuinfo __________________________________________________________________…...
Vue的学习Day1_是什么以及两种风格
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Vue是什么?二、渐进式框架1.渐进式 三、Vue API风格1.选项式 API (Options API)2.组合式 API (Composition API) 四、Vue 开发前的准备 前言 放…...
磁悬浮人工心脏的不良事件分析:美国FDA数据库的启示
引言: 左心室辅助装置(LVAD)是治疗末期难治性心力衰竭(HF)患者的有效手段。磁悬浮人工心脏HeartMate-3(磁悬浮人工心脏)作为第三代LVAD,自2017年获得美国食品药品监督管理局&#x…...
HarmonyOS(十二)——全面认识HarmonyOS三种渲染控制
渲染控制概述 ArkUI通过自定义组件的build()函数和builder装饰器中的声明式UI描述语句构建相应的UI。在声明式描述语句中开发者除了使用系统组件外,还可以使用渲染控制语句来辅助UI的构建,这些渲染控制语句包括控制组件是否显示的条件渲染语句ÿ…...
SQL 系列教程(二)
目录 SQL DELETE 语句 DELETE 语句 演示数据库 DELETE 实例 删除所有行 SQL TOP, LIMIT, ROWNUM 子句 TOP 子句 演示数据库 SQL TOP、LIMIT 和 ROWNUM 示例 SQL TOP PERCENT 实例 添加WHERE子句 SQL MIN() 和 MAX() 函数 MIN() 和 MAX() 函数 演示数据库 MIN() …...
CSS实现文本和图片无限滚动动画
Demo图如下: <style>* {margin: 0;padding: 0;box-sizing: border-box;font-family: Poppins, sans-serif;}body {min-height: 100vh;background-color: rgb(11, 11, 11);color: #fff;display: flex;flex-direction: column;justify-content: center;align-i…...
MacOS 无法ping 通 github.com 解决方案
ping github.com 会显示请求超时: PING github.com (192.30.253.112): 56 data bytes Request timeout for icmp_seq 0 Request timeout for icmp_seq 1 Request timeout for icmp_seq 2 Request timeout for icmp_seq 3 Request timeout for icmp_seq 4 Request …...
Mac 也能玩文明6!下载安装详细教程
最近朋友给我分享了一个 Mac 玩文明6的方法,丝毫不卡顿,非常流畅,分享给大家 文明6是最新的文明系列游戏,和以往的文明游戏一样,玩家将从石器时代创建文明,然后迈向信息时代,最终通过军事、经济…...
git tag的用法详解
目录 一、tag标识一个commit 二、查看tag 三、对分支打tag 四、删除tag 五、根据某个tag来clone 一、tag标识一个commit tag是用于去标记一个特定的commit。通常,在进行编译部署之前,我们需要对某一个即将release的版本进行tag,例如tag为…...
TC397 EB MCAL开发从0开始系列 之 [17.1] ETH配置实战 - ping/发送
一、ETH配置1、配置目标2、目标依赖2.1 硬件使用2.2 软件使用2.3 新增模块3、EB配置3.1 配置讲解3.2 模块配置3.2.1 MCU配置3.2.2 PORT配置3.2.3 ETH配置3.2.4 ResourceM配置4、ADS代码编写及调试4.1 工程编译...
Scrapy爬虫在新闻数据提取中的应用
Scrapy是一个强大的爬虫框架,广泛用于从网站上提取结构化数据。下面这段代码是Scrapy爬虫的一个例子,用于从新闻网站上提取和分组新闻数据。 使用场景 在新闻分析和内容聚合的场景中,收集和组织新闻数据是常见需求。例如,如果我…...
【服务器GPT+MJ+GPTs】创建部署GPT+MJ+GPTs程序网站
目录 🌺【前言】 🌺【准备】 🌺【宝塔搭建GPT+MJ+GPTs】 🌼1. 给服务器添加端口 🌼2. 安装宝塔 🌼3. 安装Docker 🌼4. 安装ChatGPT程序 🌼5. 程序更新 🌼6. 修改端口 | 密码 🌼7. 绑定域名+申请SSL证书 🌺【前言】 相信大家都对openai的产品ch…...
C语言零基础入门第2天《 visual studio下载安装教程和搭建开发环境及踩坑指南》(保姆级图文教程)
visual studio下载安装教程和搭建开发环境 1、 项目实战效果图2、简单了解一下目前主流的开发环境3、 visual studio下载地址4、 visual studio安装教程5、 配置visual studio环境变量 6、如何新建一个C项目7、新建第一个C程序8、用代码测试创建的项目是否可用8、如何成功让代码…...
分析Vue3生命周期
一.什么是生命周期 在Vue中,生命周期是组件从创建到销毁的整个过程中的不同阶段。Vue组件的生命周期主要由一系列的钩子函数(hook functions)组成。 以下是Vue组件生命周期的主要阶段: 1. 创建阶段: - beforeCre…...
Android 13.0 Launcher3 禁止在HotSeat创建Folder文件夹功能实现
1.概述 在13.0的系统rom定制化开发中,在laucher3的某些功能中,在拖拽item时 靠近某个图标时会形成文件夹(folder), 而根据客户需求不想再hotseat形成文件夹, 这就要从workspace.java从来寻找解决方案了分析hotseat是怎么变成 folder的,接下来具体实现相关功能 2.Launch…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝
目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
