当前位置: 首页 > news >正文

大语言模型推理提速:TensorRT-LLM 高性能推理实践

作者:顾静

TensorRT-LLM 如何提升 LLM 模型推理效率

大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有 self-attention 的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。

当前 LLM 模型推理的主要瓶颈是 GPU 显存资源不足。因此,各类加速框架主要集中于降低 GPU 显存峰值提高 GPU 使用率两大目标。

TensorRT-LLM [ 1] 是 NVIDIA 推出的大语言模型(LLM)推理优化框架。它提供了一组 Python API 用于定义 LLMs,并且使用最新的优化技术将 LLM 模型转换为 TensorRT Engines,推理时直接使用优化后的 TensorRT Engines。

TensorRT-LLM 主要利用以下四项优化技术提升 LLM 模型推理效率。

1. 量化

模型量化技术是通过降低原始模型的精度来减少模型推理时的 GPU 显存使用。TensorRT 支持多种模型的多种精度,以下列举了部分主流模型支持的量化精度。

图片

W8A8 SQ 使用了 SmoothQuant 技术 [ 2] ,在不降低模型推理准确率的前提下,将模型权重和激活层都降低为 INT8 精度,显著减少了 GPU 显存消耗。

W4A16/W8A16 是指模型权重为 INT4 或者 INT8,激活层为 FP16 精度。

W4A16 AWQ 以及 W4A16 GPTQ 分别实现了 AWQ [ 3] 和 GPTQ [ 4] 两篇论文中提到的量化方法。模型权重为 INT4,激活层为 FP16 精度。

2. In-Flight Batching

传统的 Batching 技术为 Static Batching 的,需要等 Batching 中所有序列推理完成后才能进行下一次批次。下图为一个输出最大 Token 为 8,Batch size 为 4 的推理过程,使用 Static Batching 技术。S3 序列在 T5 时刻就已经完成推理,但是需要等到 S2 序列在 T8 时刻推理完成后才会处理下一个 sequence,存在明显的资源浪费。

图片

In-Flight Batching 又名 Continuous Batching 或 iteration-level batching,该技术可以提升推理吞吐率,降低推理时延。Continuous Batching 处理过程如下,当 S3 序列处理完成后插入一个新序列 S5 进行处理,提升资源利用率。详情可参考论文 Orca: A Distributed Serving System for Transformer-Based Generative Models [ 5]

图片

3. Attention

Attention 机制用于从序列中提取关键/重要信息,在情感识别、翻译、问答等任务中起着至关重要的作用。Attention 机制按照演进顺序可以分为 MHA(Multi-head Attention)、MQA(Multi-query Attention) [ 6] 以及 GQA(Group-query Attention) [ 7] 机制。MQA 和 GQA 都是 MHA 的变种。

图片

MHA 是标准的多头注意力机制,每个 query 存储一份 KV,因此需要使用较多的显存。MQA 所有 query 共享一份 KV,推理时容易丢失一些细节信息。GQA 将 query 进行分组,组内共享一份 KV,可以有效避免 MHA 和 MQA 的问题。

TensorRT-LLM 支持 MHA、MQA 及 GQA 方式,可以在 tensorrt_llm.functional.gpt_attention 查看具体实现。

4. Graph Rewriting

TensorRT-LLM 在将 LLM 模型编译为 TensorRT Engines 时会对神经网络进行优化,提升执行效率。

基于阿里云容器服务 ACK 的实战体验

云原生 AI 套件

云原生 AI 套件是阿里云容器服务 ACK 提供的云原生 AI 技术和产品方案,帮助企业更快、更高效地落地云原生 AI 系统。

本文将介绍如何基于阿里云容器服务 ACK 云原生 AI 套件,利用 TensorRT-LLM 优化 LLM 模型推理。

环境配置

  1. 参考文档安装云原生 AI 套件 [ 8]

  2. 登陆容器服务管理控制台 [ 9] ,在左侧导航栏选择集群 > 应用 > 云原生 AI 套件。等待开发控制台准备就绪后,单击开发控制台

  3. 开发控制台左侧,选择 Notebook,在 Notebook 页面右上角,单击创建 Notebook 创建新的 Notebook 环境。Notebook 资源需要 CPU:12C,内存:40G,GPU 显存:24GB。(节点对应规格为 ecs.gn7i-c16g1.4xlarge [ 10] )

图片

准备 TensorRT-LLM 环境

  1. 构建 Notebook 所需镜像。
FROM docker.io/nvidia/cuda:12.2.2-cudnn8-runtime-ubuntu22.04ENV DEBIAN_FRONTEND=noninteractiveRUN apt-get update && apt-get upgrade -y && \apt-get install -y --no-install-recommends \libgl1 libglib2.0-0 wget git curl vim \python3.10 python3-pip python3-dev build-essential \openmpi-bin libopenmpi-dev jupyter-notebook jupyterRUN pip3 install tensorrt_llm -U --extra-index-url https://pypi.nvidia.com
RUN pip3 install --upgrade jinja2==3.0.3 pynvml>=11.5.0RUN rm -rf /var/cache/apt/ && apt-get clean && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/* && \rm -rf /root/.cache/pip/ && rm -rf /*.whlWORKDIR /root
RUN git clone https://github.com/NVIDIA/TensorRT-LLM.git --branch v0.7.1ENTRYPOINT ["sh","-c","jupyter notebook --allow-root --notebook-dir=/root --port=8888 --ip=0.0.0.0 --ServerApp.token=''"]
  1. 下载模型,本文以 Baichuan2-7B-Base 为例。

a.确认 tensorrt_llm 安装成功

! python3 -c "import tensorrt_llm; print(tensorrt_llm.__version__)"
# 0.7.1

b.安装 baichuan 依赖

! cd /root/TensorRT-LLM/examples/baichuan
!pip3 install -r requirements.txt

c.下载 Baichuan2-7B-Chat 模型

!yum install git-lfs
!GIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/baichuan-inc/Baichuan2-7B-Chat.git
!cd Baichuan2-7B-Chat/
!git lfs pull

d.将模型编译为 TensorRT Engines,权重指定为 INT8。模型转换约 5 分钟。

! cd /root/TensorRT-LLM/examples/baichuan
# Build the Baichuan V2 7B model using a single GPU and apply INT8 weight-only quantization.
! python3 build.py --model_version v2_7b \--model_dir ./Baichuan2-7B-Chat \--dtype float16 \--use_gemm_plugin float16 \--use_gpt_attention_plugin float16 \--use_weight_only \--output_dir ./tmp/baichuan_v2_7b/trt_engines/int8_weight_only/1-gpu/

e.使用构建好的 tensort engines 进行推理

# With INT8 weight-only quantization inference
! python3 ../run.py --input_text "世界上第二高的山峰是哪座?" \--max_output_len=50 \--tokenizer_dir=./Baichuan2-7B-Chat \--engine_dir=./tmp/baichuan_v2_7b/trt_engines/int8_weight_only/1-gpu/

预期输出:

Input [Text 0]: "世界上第二高的山峰是哪座?"
Output [Text 0 Beam 0]: "世界上第二高的山峰是喀喇昆仑山脉的乔戈里峰(K2),海拔高度为8611米。"

性能测试

  1. 使用 TensorRT-LLM 自带的 benchmark。

向 _allowed_configs dict 中添加 baichuan2_7b_chat 配置,代码可参考链接 [1****1]

🔔 注:0.7.1 版本 benchmark 还未支持 baichuan2 模型,因此需要手动修改下 allowed_configs 配置。

! cd /root/TensorRT-LLM/benchmarks/python
! vim allowed_configs.py
#   "baichuan2_7b_chat":ModelConfig(name="baichuan2_7b_chat",family="baichuan_7b",benchmark_type="gpt",build_config=BuildConfig(num_layers=32,num_heads=32,hidden_size=4096,vocab_size=125696,hidden_act='silu',n_positions=4096,inter_size=11008,max_batch_size=128,max_input_len=512,max_output_len=200,builder_opt=None,)),

运行 benchmark:

! python3 benchmark.py \-m baichuan2_7b_chat \--mode plugin \--engine_dir /root/TensorRT-LLM/examples/baichuan/tmp/baichuan_v2_7b/trt_engines/int8_weight_only/1-gpu \--batch_size 1 \--input_output_len "32,50;128,50"
# batch_size 并发度
# input_output_len 输入输出的长度,多个测试用例用分号分隔

Expected outputs:

[BENCHMARK] model_name baichuan2_7b_chat world_size 1 num_heads 32 num_kv_heads 32 num_layers 32 hidden_size 4096 vocab_size 125696 precision float16 batch_size 1 input_length 32 output_length 50 gpu_peak_mem(gb) 8.682 build_time(s) 0 tokens_per_sec 60.95 percentile95(ms) 821.977 percentile99(ms) 822.093 latency(ms) 820.348 compute_cap sm86 generation_time(ms) 798.45 total_generated_tokens 49.0 generation_tokens_per_second 61.369
[BENCHMARK] model_name baichuan2_7b_chat world_size 1 num_heads 32 num_kv_heads 32 num_layers 32 hidden_size 4096 vocab_size 125696 precision float16 batch_size 1 input_length 128 output_length 50 gpu_peak_mem(gb) 8.721 build_time(s) 0 tokens_per_sec 59.53 percentile95(ms) 841.708 percentile99(ms) 842.755 latency(ms) 839.852 compute_cap sm86 generation_time(ms) 806.571 total_generated_tokens 49.0 generation_tokens_per_second 60.751
  1. 对比 INT8 量化模型与原始模型性能。

原始模型执行命令:

def normal_inference():from transformers import AutoModelForCausalLM, AutoTokenizerfrom transformers.generation.utils import GenerationConfigtokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True)model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)model.generation_config = GenerationConfig.from_pretrained(model_path)messages = []messages.append({"role": "user", "content": prompt})response = model.chat(tokenizer, messages)print(response)

INT8 量化模型命令:

def tensorrt_llm_inference():from subprocess import Popen, PIPEscript = f'''python3 /root/TensorRT-LLM/examples/run.py --input_text \"{prompt}\"  \--max_output_len=50 \--tokenizer_dir=/root/TensorRT-LLM/examples/baichuan/Baichuan2-7B-Chat \--engine_dir=/root/TensorRT-LLM/examples/baichuan/tmp/baichuan_v2_7b/trt_engines/int8_weight_only/1-gpu/'''p = Popen(['sh', '-c', script], stdout=PIPE,stderr=PIPE)output, err = p.communicate()if p.returncode != 0:print(f"tensorrt_llm_inference() error:{err}")returnprint(output)

图片

TensorRT-LLM 加速方案在采用 INT8 模型量化的情况下,相比于默认的 Baichuan2-7B-Chat 模型,显存峰值降低了 *43.8% *,时延降低了 61.1%。

参考文献:

https://nvidia.github.io/TensorRT-LLM/architecture.html

https://www.anyscale.com/blog/continuous-batching-llm-inference

相关链接:

[1] TensorRT-LLM

https://github.com/NVIDIA/TensorRT-LLM

[2] SmoothQuant技术

https://arxiv.org/abs/2211.10438

[3] AWQ

https://arxiv.org/abs/2306.00978

[4] GPTQ

https://arxiv.org/abs/2210.17323

[5] Orca: A Distributed Serving System for Transformer-Based Generative Models

https://help.aliyun.com/zh/eventbridge/user-guide/transform/?spm=a2c4g.11186623.0.0.501b5750w5RP1Q

[6] MQA(Multi-query Attention)

https://arxiv.org/abs/1911.02150

[7] GQA(Group-query Attention)

https://arxiv.org/abs/2307.09288

[8] 安装云原生AI套件

https://help.aliyun.com/zh/ack/cloud-native-ai-suite/user-guide/deploy-the-cloud-native-ai-suite?spm=a2c4g.11186623.0.0.7e223d92U1aVNf

[9] 容器服务管理控制台

https://account.aliyun.com/login/login.htm?oauth_callback=https%3A%2F%2Fcs.console.aliyun.com%2F

[10] ecs.gn7i-c16g1.4xlarge

https://help.aliyun.com/zh/ecs/user-guide/overview-of-instance-families#gn7i

[11] 链接

https://github.com/NVIDIA/TensorRT-LLM/blob/12e82e30b0e64b0f7ada0dc5993edd3b05385964/benchmarks/python/allowed_configs.py#L940

相关文章:

大语言模型推理提速:TensorRT-LLM 高性能推理实践

作者:顾静 TensorRT-LLM 如何提升 LLM 模型推理效率 大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有 self-attention 的编码器和解码器组…...

全面理解“张量”概念

1. 多重视角看“张量” 张量(Tensor)是一个多维数组的概念,在不同的学科领域中有不同的应用和解释: 物理学中的张量: 在物理学中,张量是一个几何对象,用来表示在不同坐标系下变换具有特定规律的…...

MacOS X 安装免费的 LaTex 环境

最近把工作终端一步步迁移到Mac上来了,搭了个 Latex的环境,跟windows上一样好用。 首先,如果是 intel 芯片的 macOS,那么可以使用组合1, 如果是 M1、M2 或 M3 芯片或者 intel 芯片的 Mac book,则应该使用…...

深入Amazon S3:实战指南

Amazon S3(Simple Storage Service)是AWS(Amazon Web Services)提供的一项强大的云存储服务,广泛用于存储和检索各种类型的数据。本篇实战指南将深入介绍如何在实际项目中充分利用Amazon S3的功能,包括存储桶的创建、对象的管理、权限控制、版本控制、日志记录等方面的实…...

Ansible自动化运维(三)Playbook 模式详解

👨‍🎓博主简介 🏅云计算领域优质创作者   🏅华为云开发者社区专家博主   🏅阿里云开发者社区专家博主 💊交流社区:运维交流社区 欢迎大家的加入! 🐋 希望大家多多支…...

LCS板子加逆向搜索

LCS 题面翻译 题目描述: 给定一个字符串 s s s 和一个字符串 t t t ,输出 s s s 和 t t t 的最长公共子序列。 输入格式: 两行,第一行输入 s s s ,第二行输入 t t t 。 输出格式: 输出 s s s…...

不同知识表示方法与知识图谱

目录 前言1 一阶谓词逻辑1.1 简介1.2 优势1.3 局限性 2 产生式规则2.1 简介2.2 优势2.3 局限性 3 框架系统3.1 简介3.2 优势3.3 局限性 4 描述逻辑4.1 简介4.2 优势4.3 局限性 5 语义网络5.1 简介5.2 优势5.3 局限性 结语 前言 知识表示是人工智能领域中至关重要的一环&#x…...

Kotlin程序设计 扩展篇(一)

Kotlin程序设计(扩展一) **注意:**开启本视频学习前,需要先完成以下内容的学习: 请先完成《Kotlin程序设计》视频教程。请先完成《JavaSE》视频教程。 Kotlin在设计时考虑到了与Java的互操作性,现有的Ja…...

星环科技基于第五代英特尔®至强®可扩展处理器的分布式向量数据库解决方案重磅发布

12月15日,2023 英特尔新品发布会暨 AI 技术创新派对上,星环科技基于第五代英特尔至强可扩展处理器的Transwarp Hippo分布式向量数据库解决方案重磅发布。该方案利用第五代英特尔至强可扩展处理器带来的强大算力,实现了约 2 倍的代际性能提升&…...

一体化运维的发展趋势与未来展望

随着信息技术的迅猛发展,企业的IT系统已经从单一的、孤立的应用转变为多元化、复杂化的系统集群。云计算、大数据、物联网等前沿技术的广泛应用,使得企业的IT运维面临着前所未有的挑战。在这样的背景下,一体化运维作为一种新型的运维模式&…...

科技云报道:金融大模型落地,还需跨越几重山?

科技云报道原创。 时至今日,大模型的狂欢盛宴仍在持续,而金融行业得益于数据密集且有强劲的数字化基础,从一众场景中脱颖而出。 越来越多的公司开始布局金融行业大模型,无论是乐信、奇富科技、度小满、蚂蚁这样的金融科技公司&a…...

C语言入门到精通之练习34:求100之内的素数

题目&#xff1a;求100之内的素数。 程序分析&#xff1a;质数&#xff08;素数&#xff09;酵母素数&#xff0c;有无限个。一个大于1的自然数&#xff0c;除了1和它本身外&#xff0c;不能被其他自然数整除。 代码如下&#xff1a; #include <stdio.h># #include &l…...

Qt采集本地摄像头推流成rtsp/rtmp(可网页播放/支持嵌入式linux)

一、功能特点 支持各种本地视频文件和网络视频文件。支持各种网络视频流&#xff0c;网络摄像头&#xff0c;协议包括rtsp、rtmp、http。支持将本地摄像头设备推流&#xff0c;可指定分辨率和帧率等。支持将本地桌面推流&#xff0c;可指定屏幕区域和帧率等。自动启动流媒体服…...

Oracle按日周月年自动分区

目录 1、分区键 2、初始分区 3、周月年自动分区 4、按日自动分区表建表语句 与普通建表语句相比&#xff0c;分区表多了一些分区信息&#xff1b; 1、分区键 以下面销售明细表为例&#xff0c;以data_dt为分区键&#xff0c;NUMTODSINTERVAL(1, day) 按日分区 PARTITION …...

单元测试、模块测试、web接口测试

单元测试与模块测试 什么是“单元测试”、“模块测试”&#xff1f; 然而在功能的实现代码中并没有“单元”&#xff0c;也没有“模块”&#xff1b;只有函数、类和方法。先来分别看看它们 的定义&#xff1a; 单元测试&#xff08;Unit testing&#xff09;&#xff0c;是指…...

DAY10_SpringBoot—SpringMVC重定向和转发RestFul风格JSON格式SSM框架整合Ajax-JQuery

目录 1 SpringMVC1.1 重定向和转发1.1.1 转发1.1.2 重定向1.1.3 转发练习1.1.4 重定向练习1.1.5 重定向/转发特点1.1.6 重定向/转发意义 1.2 RestFul风格1.2.1 RestFul入门案例1.2.2 简化业务调用 1.3 JSON1.3.1 JSON介绍1.3.2 JSON格式1.3.2.1 Object格式1.3.2.2 Array格式1.3…...

刘润-进化的力量2 一刷 笔记

安全感来自确定性&#xff0c;但机会藏在不确定性中 安全感来自确定性&#xff0c;但机会藏在不确定性中。 每一个弯道里&#xff0c;都有你超车的机会 意外、周期、趋势、规划 可是&#xff0c;为什么趋势一定是不可逆转的呢&#xff1f;因为&#xff0c;效率提高了 长期…...

用Excel辅助做数独

做数独游戏的时候&#xff0c;画在纸上很容易弄花眼&#xff0c;所以我考虑用Excel辅助做一个。 界面如下&#xff1a; 按下初始化表格区域按钮&#xff0c;会在所有单元格中填充“123456789”。如下图&#xff1a; 当某个单元格删除得只剩一个数字时&#xff0c;会将同一行、…...

arcgis实现截图/截屏功能

arcgis实现截图/截屏功能 文章目录 arcgis实现截图/截屏功能前言效果展示相关代码 前言 本篇将使用arcgis实现截图/截屏功能&#xff0c;类似于qq截图 效果展示 相关代码 <!DOCTYPE html> <html> <head><meta charset"utf-8"><meta nam…...

mysql备份

1.新建备份目录 mkdir -p /data/mysql_dump/#查找mysql配置位置 find / -name "my.cnf" find / -name "mysql.sock" find / -name "mysqldump"2.定时任务 #每天凌晨备份一次 echo "00 00 * * * root /data/mysql_bak.sh" >> /…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...