当前位置: 首页 > news >正文

深入浅出 diffusion(2):pytorch 实现 diffusion 加噪过程

         我在上篇博客深入浅出 diffusion(1):白话 diffusion 原理(无公式)中介绍了 diffusion 的一些基本原理,其中谈到了 diffusion 的加噪过程,本文用pytorch 实现下到底是怎么加噪的。

import torch
import math
import numpy as np
from PIL import Image
import requests
import matplotlib.pyplot as plot
import cv2def linear_beta_schedule(timesteps):"""linear schedule, proposed in original ddpm paper"""scale = 1000 / timestepsbeta_start = scale * 0.0001beta_end = scale * 0.02return torch.linspace(beta_start, beta_end, timesteps, dtype = torch.float64)def cosine_beta_schedule(timesteps, s = 0.008):"""cosine scheduleas proposed in https://openreview.net/forum?id=-NEXDKk8gZ"""steps = timesteps + 1t = torch.linspace(0, timesteps, steps, dtype = torch.float64) / timestepsalphas_cumprod = torch.cos((t + s) / (1 + s) * math.pi * 0.5) ** 2alphas_cumprod = alphas_cumprod / alphas_cumprod[0]betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])return torch.clip(betas, 0, 0.999)# 时间步(timestep)定义为1000
timesteps = 1000# 定义Beta Schedule, 选择线性版本,同DDPM原文一致,当然也可以换成cosine_beta_schedule
betas = linear_beta_schedule(timesteps=timesteps)# 根据beta定义alpha 
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
sqrt_recip_alphas = torch.sqrt(1.0 / alphas)# 计算前向过程 diffusion q(x_t | x_{t-1}) 中所需的
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)def extract(a, t, x_shape):batch_size = t.shape[0]out = a.gather(-1, t.cpu())return out.reshape(batch_size, *((1,) * (len(x_shape) - 1))).to(t.device)# 前向加噪过程: forward diffusion process
def q_sample(x_start, t, noise=None):if noise is None:noise = torch.randn_like(x_start)cv2.imwrite('noise.png', noise.numpy()*255)sqrt_alphas_cumprod_t = extract(sqrt_alphas_cumprod, t, x_start.shape)sqrt_one_minus_alphas_cumprod_t = extract(sqrt_one_minus_alphas_cumprod, t, x_start.shape)print('sqrt_alphas_cumprod_t :', sqrt_alphas_cumprod_t)print('sqrt_one_minus_alphas_cumprod_t :', sqrt_one_minus_alphas_cumprod_t)return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise# 图像后处理
def get_noisy_image(x_start, t):# add noisex_noisy = q_sample(x_start, t=t)# turn back into PIL imagenoisy_image = x_noisy.squeeze().numpy()return noisy_image...# 展示图像, t=0, 50, 100, 500的效果
x_start = cv2.imread('img.png') / 255.0
x_start = torch.tensor(x_start, dtype=torch.float)
cv2.imwrite('img_0.png', get_noisy_image(x_start, torch.tensor([0])) * 255.0)
cv2.imwrite('img_50.png', get_noisy_image(x_start, torch.tensor([50])) * 255.0)
cv2.imwrite('img_100.png', get_noisy_image(x_start, torch.tensor([100])) * 255.0)
cv2.imwrite('img_500.png', get_noisy_image(x_start, torch.tensor([500])) * 255.0)
cv2.imwrite('img_999.png', get_noisy_image(x_start, torch.tensor([999])) * 255.0)sqrt_alphas_cumprod_t : tensor([[[0.9999]]], dtype=torch.float64)
sqrt_one_minus_alphas_cumprod_t : tensor([[[0.0100]]], dtype=torch.float64)
sqrt_alphas_cumprod_t : tensor([[[0.9849]]], dtype=torch.float64)
sqrt_one_minus_alphas_cumprod_t : tensor([[[0.1733]]], dtype=torch.float64)
sqrt_alphas_cumprod_t : tensor([[[0.9461]]], dtype=torch.float64)
sqrt_one_minus_alphas_cumprod_t : tensor([[[0.3238]]], dtype=torch.float64)
sqrt_alphas_cumprod_t : tensor([[[0.2789]]], dtype=torch.float64)
sqrt_one_minus_alphas_cumprod_t : tensor([[[0.9603]]], dtype=torch.float64)
sqrt_alphas_cumprod_t : tensor([[[0.0064]]], dtype=torch.float64)
sqrt_one_minus_alphas_cumprod_t : tensor([[[1.0000]]], dtype=torch.float64)

        以下分别为原图,t = 0, 50, 100, 500, 999 的结果。

        可见,随着 t 的加大,原图对应的比例系数减小,噪声的强度系数加大,t = 500的时候,隐约可见人脸轮廓,t = 999 的时候,人脸彻底淹没在噪声里面了。

相关文章:

深入浅出 diffusion(2):pytorch 实现 diffusion 加噪过程

我在上篇博客深入浅出 diffusion(1):白话 diffusion 原理(无公式)中介绍了 diffusion 的一些基本原理,其中谈到了 diffusion 的加噪过程,本文用pytorch 实现下到底是怎么加噪的。 import torch…...

【软件测试】学习笔记-构建并执行 JMeter 脚本的正确姿势

有些团队在组建之初往往并没有配置性能测试人员,后来随着公司业务体量的上升,开始有了性能测试的需求,很多公司为了节约成本会在业务测试团队里选一些技术能力不错的同学进行性能测试,但这些同学也是摸着石头过河。他们会去网上寻…...

iOS 面试 Swift基础题

一、Swift 存储属性和计算属性比较: 存储型属性:用于存储一个常量或者变量 计算型属性: 计算性属性不直接存储值,而是用 get / set 来取值 和 赋值,可以操作其他属性的变化. 计算属性可以用于类、结构体和枚举,存储属性只能用于类和结构体。存储属性可…...

(七)for循环控制

文章目录 用法while的用法for的用法两者之间的联系可以相互等价用for改写while示例for和while的死循环怎么写for循环见怪不怪表达式1省略第一.三个表达式省略(for 改 while)全省略即死循环(上面已介绍) 用法 类比学习while语句 …...

ASP .NET Core Api 使用过滤器

过滤器说明 过滤器与中间件很相似,过滤器(Filters)可在管道(pipeline)特定阶段(particular stage)前后执行操作。可以将过滤器视为拦截器(interceptors)。 过滤器级别范围…...

CodeGPT--(Visual )

GitCode - 开发者的代码家园 gitcode.com/ inscode.csdn.net/liujiaping/java_1706242128563/edit?openFileMain.java&editTypelite marketplace.visualstudio.com/items?itemNameCSDN.csdn-codegpt&spm1018.2226.3001.9836&extra%5Butm_source%5Dvip_chatgpt_c…...

1.Mybatis入门

目录 前言 1入门 1.1 入门程序实现 1.2 数据准备 ​编辑 1.3 配置Mybatis 1.4 编写SQL语句 1.5 单元测试 1.6 解决SQL警告与提示 2. JDBC介绍(了解) 2.1 介绍 2.2 代码 2.3 问题分析 2.4 技术对比 3. 数据库连接池 3.1 介绍 3.2 产品 4. lombok 4.1 介绍 4.…...

android camera系列(Camera1、Camera2、CameraX)的使用以及输出的图像格式

一、Camera 1.1、结合SurfaceView实现预览 1.1.1、布局 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app"http://schemas.android.com/apk/res-au…...

live555搭建流式rtsp服务器

源代码已上传gitee 一、需求 live555源代码中的liveMediaServer是将本地文件作为源文件搭建rtsp服务器&#xff0c;我想用live555封装一个第三方库&#xff0c;接收流数据搭建Rtsp服务器&#xff1b;预想接口如下&#xff1a; class LiveRtspServer { public:/***brief构造一…...

Apache孵化器领路人与导师的职责

对于捐赠到 ASF 孵化器的项目来说&#xff0c; ASF 孵化器项目管理委员会&#xff08;IPMC&#xff09;的成员会扮演两个角色&#xff0c;一个 孵化器领路人&#xff08;Champion&#xff09;&#xff0c;另外一个是孵化器导师&#xff08;Mentor&#xff09;。 本文源自 ALC …...

【C++中STL】set/multiset容器

set/multiset容器 Set基本概念set构造和赋值set的大小和交换set的插入和删除set查找和统计 set和multiset的区别pair对组两种创建方式 set容器排序 Set基本概念 所有元素都会在插入时自动被排序。 set/multist容器属于关联式容器&#xff0c;底层结构属于二叉树。 set不允许容…...

使用 create-react-app 创建 react 应用

一、创建项目并启动 第一步&#xff1a;全局安装&#xff1a;npm install -g create-react-app 第二步&#xff1a;切换到想创建项目的目录&#xff0c;使用命令create-react-app hello-react 第三步&#xff1a;进入项目目录&#xff0c;cd hello-react 第四步&#xff1a;启…...

obs-studio 源码学习 obs.h

obs.h 引用头文件介绍 c99defs.h&#xff1a;这个头文件提供了一些 C99 标准的定义和声明&#xff0c;包括一些常用的宏定义和类型定义&#xff0c;用于提高代码的可移植性和兼容性。 bmem.h&#xff1a;这个头文件提供了对内存分配和管理的功能&#xff0c;包括一些内存分配…...

C语言-指针的基本知识(上)

一、关于内存 存储器&#xff1a;存储数据器件 外存 外存又叫外部存储器&#xff0c;长期存放数据&#xff0c;掉电不丢失数据 常见的外存设备&#xff1a;硬盘、flash、rom、u盘、光盘、磁带 内存 内存又叫内部存储器&#xff0c;暂时存放数据&#xff0c;掉电数据…...

4核16G幻兽帕鲁服务器优惠价格表,阿里云和腾讯云报价

幻兽帕鲁服务器价格多少钱&#xff1f;4核16G服务器Palworld官方推荐配置&#xff0c;阿里云4核16G服务器32元1个月、96元3个月&#xff0c;腾讯云幻兽帕鲁服务器服务器4核16G14M带宽66元一个月、277元3个月&#xff0c;8核32G22M配置115元1个月、345元3个月&#xff0c;16核64…...

GitHub 上传文件夹到远程仓库、再次上传修改文件、如何使用lfs上传大文件、github报错一些问题

按照大家的做法&#xff0c;把自己遇到的问题及解决方案写出来&#xff08;注意&#xff1a;Error里面有些方法有时候我用可以成功&#xff0c;有时候我用也不能成功&#xff0c;写出来仅供参考&#xff0c;实在不行重头再clone&#xff0c;add&#xff0c;commit&#xff0c;p…...

一些es的基本操作

目录 给索引增加字段&#xff1a;给索引删除字段[^1]&#xff1a;创建索引&#xff1a;插入document删除document(应该是按ID) : 给索引增加字段&#xff1a; 用postMan: 给名为population_portrait_hash_seven的索引增加了一个text类型的字段。 用chrome插件Elasticvue 的Re…...

酒鬼酒2024年展望:稳发展动能,迈入恢复性增长轨道

文 | 琥珀酒研社 作者 | 渡过 最近几个月来&#xff0c;白酒估值回落到近十年来低位&#xff0c;反映出了整个白酒行业的市场低迷和虚弱现状。不管是头部企业五粮液、泸州老窖&#xff0c;还是区域酒企口子窖、金种子酒等&#xff0c;最近都通过“回购”或“增持”&#xff0…...

1002. HarmonyOS 开发问题:鸿蒙 OS 技术特性是什么?

1002. HarmonyOS 开发问题&#xff1a;鸿蒙 OS 技术特性是什么? 硬件互助&#xff0c;资源共享 分布式软总线 分布式软总线是多种终端设备的统一基座&#xff0c;为设备之间的互联互通提供了统一的分布式通信能力&#xff0c;能够快速发现并连接设备&#xff0c;高效地分发…...

vue-cli 无法安装问题解决

在macOS上安装vue-cli&#xff0c;但一直都失败&#xff0c;最后终于解决。 先后报错了2个问题。 报错无法安装 其实原因是源被切断&#xff0c;默认的源是官方的&#xff0c;但在CN是无法正常访问&#xff0c;各种问题。直接将源修改才可以。但可能需要试多次。 npm config…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...