当前位置: 首页 > news >正文

文献速递:人工智能医学影像分割--- 深度学习分割骨盆骨骼:大规模CT数据集和基线模型

文献速递:人工智能医学影像分割— 深度学习分割骨盆骨骼:大规模CT数据集和基线模型

我们为大家带来人工智能技术在医学影像分割上的应用文献。

人工智能在医学影像分析中发挥着至关重要的作用,尤其体现在图像分割技术上。这项技术的目的是准确划分人体重要器官和异常物体,例如肺部、结节、肿瘤等。高质量的图像分割结果对于医疗手术的规划至关重要,同时也在疾病的诊断和预后中发挥着重要作用。它能够帮助医生清晰地标记出病变部位的确切位置,并确定其它重要特征,如大小、体积等。采用基于人工智能的解决方案,能够显著提高这些程序的效率和精准度,大大缩短所需时间。

01

文献速递介绍

骨盆是连接脊柱和下肢的重要结构,在维持身体稳定和保护腹部内部器官方面发挥着至关重要的作用。骨盆的异常,如髋关节发育不良和骨盆骨折等,会对我们的身体健康产生严重影响。例如,骨盆骨折作为最严重和危及生命的骨损伤,会损伤骨折部位的其他器官,在最严重的情况下,骨盆开放性骨折的死亡率可达45%。医学影像学在骨盆损伤患者的诊断和治疗的整个过程中发挥着重要作用。与X射线图像相比,CT保留了实际的解剖结构,包括深度信息,为外科医生提供了更多关于损伤部位的细节,因此常用于三维重建,以便进行后续手术计划和术后效果评估。在这些应用中,准确的骨盆骨分割对于评估骨盆损伤的严重程度至关重要,有助于外科医生做出正确的判断和选择合适的手术入路。过去,外科医生使用Mimics1等软件从CT手动分割骨盆,这既耗时又不可重复。

为了满足这些临床需求,本文提出了一种能够准确快速地从CT中分割骨盆骨的自动算法。现有的从CT中分割骨盆骨的方法大多使用简单的阈值、区域生长和手工模型,其中包括可变形模型、统计形状模型、分水岭和其他。这些方法专注于局部灰度信息,由于皮质骨和骨小梁之间的密度差异,精度有限。而骨小梁在纹理和强度方面与周围组织相似。如果存在骨折,则进一步导致弱边缘。最近,基于深度学习的方法在图像分割方面取得了巨大的成功;然而,它们对CT骨盆骨分割的有效性还不完全清楚。虽然有一些与骨盆骨相关的数据集,但其中只有少数是开源的,并且大小较小(小于5张图像或200张切片),远远少于其他器官。虽然进行了基于深度学习的实验,但结果并不是很好(骰子=0.92),数据集只有200个CT片。对于深度学习方法的鲁棒性,拥有一个包括尽可能多的真实场景的综合数据集至关重要。本文通过策划一个大规模的CT数据集来弥补这一差距,并探索深度学习在这一任务中的应用,据我们所知,这是该领域的第一次真正尝试,具有更多的统计意义和参考价值。为了构建一个全面的数据集,我们必须处理由于成像分辨率和视野(FOV)的差异、不同部位产生的域移位、造影血管、粪便和食糜、骨折、低剂量、金属伪影等因素引起的各种图像外观变化。图1给出了这些不同条件的一些示例。在上述外观变化中,金属伪影的挑战是最难处理的。此外,本文的目标是将骨盆分割为多个骨头,包括腰椎、骶骨、左髋和右髋,而不是简单地从CT中分割出整个骨盆。本文的贡献总结如下:- 从多个领域和不同制造商汇集的骨盆CT数据集,包括1184个CT卷(超过320K CT切片)的不同外观变化(包括75个带有金属伪影的CT)。它们的多骨标签由专家仔细注释。我们将其开源以造福整个社区;- 学习一个深度多类分割网络[14],从多领域标记的图像中获得腰椎、骶骨、左髋和右髋分割的更有效表示,从而获得所需的准确性和鲁棒性;- 一个全自动分析管道,实现了高精度、高效率和鲁棒性,从而使其在临床实践中具有潜在的应用价值。

Title

题目

Deep learning to segment pelvic bones: large-scale CT datasets and baseline models

深度学习分割骨盆骨骼:大规模CT数据集和基线模型

Abstract

摘要

Pelvic bone segmentation in CT has always been an essential step in clinical diagnosis and surgery planning of pelvic bone diseases. Existing methods for pelvic bone segmentation are either hand-crafted or semi-automatic and achieve limited accuracy when dealing with image appearance variations due to the multi-site domain shift, the presence of contrasted vessels, coprolith and chyme, bone fractures, low dose, metal artifacts, etc. Due to the lack of a large-scale pelvic CT dataset with annotations, deep learning methods are not fully explored.

在CT中对骨盆骨骼的分割一直是临床诊断和骨盆骨疾病手术规划中的一个重要步骤。现有的骨盆骨骼分割方法要么是手工制作的,要么是半自动的,当面对由于多站点域转换、对比鲜明的血管、粪石和食糜、骨折、低剂量、金属伪影等因素造成的图像外观变化时,这些方法的准确性有限。由于缺乏一个带有注释的大规模骨盆CT数据集,深度学习方法尚未得到充分探索。

Methods

方法

In this paper, we aim to bridge the data gap by curating a large pelvic CT dataset pooled from multiple sources, including 1184 CT volumes with a variety of appearance variations. Then, we propose for the first time, to the best of our knowledge, to learn a deep multi-class network for segmenting lumbar spine, sacrum, left hip, and right hip, from multiple-domain images simultaneously to obtain more effective and robust feature representations. Finally, we introduce a post-processor based on the signed distance function (SDF).

在本文中,我们旨在通过从多个来源整理一个大型骨盆CT数据集来弥补数据差距,包括1184个CT体积和多种外观变化。然后,据我们所知,我们首次提出学习一个深度多类网络,用于同时从多域图像中分割腰椎、骶骨、左髋和右髋,以获得更有效和稳健的特征表示。最后,我们介绍了一种基于有符号距离函数(SDF)的后处理器。

Results

结果

Extensive experiments on our dataset demonstrate the effectiveness of our automatic method, achieving an average Dice of 0.987 for a metal-free volume. SDF post-processor yields a decrease of 15.1% in Hausdorff distance compared with traditional post-processor.

我们对数据集进行的广泛实验证明了我们自动方法的有效性,对于无金属伪影的体积,达到了平均Dice系数0.987。与传统后处理器相比,SDF后处理器使豪斯多夫距离减少了15.1%。

Conclusions

结论

We believe this large-scale dataset will promote the development of the whole community and open source the images, annotations, codes, and trained baseline models at https://github.com/ICT-MIRACLE-lab/CTPelvic1K. Keywords CT dataset · Pelvic segmentation · Deep learning · SDF post-processing

我们相信这个大规模数据集将促进整个社区的发展,并在https://github.com/ICT-MIRACLE-lab/CTPelvic1K上开源图像、注释、代码和训练好的基线模型。关键词 CT数据集 · 骨盆分割 · 深度学习 · SDF后处理

Figure

图片

Fig. 1 Pelvic CT image examples with various conditions

图 1. 不同条件下的骨盆CT图像示例

图片

Fig. 2 The designed annotation pipeline based on an AID (Annotation by Iterative Deep Learning) strategy. In Step I, two senior experts first manually annotate 40 cases of data as the initial database. In Step II, we train a deep network based on the human annotated database and use it to predict new data. In Step III, initial annotations from the deep network are checked and modified by human annotators. Step II and Step III are repeated iteratively to refine a deep network to a more and more powerful ‘annotator’. This deep network ‘annotator’ also unifies the annotation standards of different human annotators

图 2 基于AID(通过迭代深度学习的注释)策略设计的注释流程图。在第一步中,两位资深专家首先手动标注40例数据作为初始数据库。在第二步中,我们基于人工注释的数据库训练一个深度网络,并用它来预测新数据。在第三步中,深度网络的初始注释由人类注释者检查和修改。第二步和第三步重复迭代,以精炼深度网络成为一个越来越强大的‘注释者’。这个深度网络‘注释者’也统一了不同人类注释者的标注标准。

图片

Fig. 3 Overview of our pelvic bones segmentation system, which learns from multi-domain CT images for effective and robust representations. The 3D U-Net cascade is used here to exploit more spatial information in 3D CT images. SDF is introduced to our post-processor to add distance constraint besides size constraint used in traditional MCR-based method

图 3 我们骨盆骨骼分割系统的概览,该系统从多域CT图像中学习,以获得有效和稳健的表示。这里使用了3D U-Net级联,以利用3D CT图像中更多的空间信息。在我们的后处理器中引入了SDF,除了传统的基于MCR方法使用的大小约束之外,还增加了距离约束。

图片

Fig. 4 Heat map of DC & HD results in Table 3. The vertical axis represents different sub-datasets, and the horizontal axis represents different models. In order to show the normal values more clearly, we clip some outliers to the boundary value, i.e., 0.95 in DC and 30 in HD. The values out of range are marked in the grid. The cross in the lower right corner indicates that there is no corresponding experiment

图 4 表 3中DC和HD结果的热图。垂直轴代表不同的子数据集,水平轴代表不同的模型。为了更清楚地显示正常值,我们将一些异常值剪切到边界值,即DC中的0.95和HD中的30。超出范围的值在网格中标记。右下角的叉号表示没有相应的实验。

图片

Fig. 5 Visualization of segmentation results from six datasets tested on different models. Among them, the white, green, blue, and yellow parts of the segmentation results represent the sacrum, left hip bone, right hip bone, and lumbar spine, respectively

图 5 六个数据集在不同模型上测试的分割结果可视化。其中,分割结果的白色、绿色、蓝色和黄色部分分别代表骶骨、左髋骨、右髋骨和腰椎。

图片

Fig. 6 Comparison between post-processing methods: traditional MCR and the proposed SDF filtering

图 6 后处理方法的比较:传统的MCR和提出的SDF过滤。

Table

图片

Table 1 Overview of our large-scale Pelvic CT dataset. ‘#’ represents the number of 3D volumes. ‘Tr/Val/Ts’ denotes training/validation/testing set. Ticks [] in table refer to we can access

the CT images’ acquisition equipment manufacturer[M] information of that sub-dataset. Due to the difficulty of labeling the CLINIC-metal, CLINIC-metal is taken off in our supervised training phase

表 1 我们大规模骨盆CT数据集概览。‘#’代表3D体积的数量。‘Tr/Val/Ts’表示训练/验证/测试集。表格中的勾选框[]表示我们可以访问该子数据集的CT图像采集设备制造商[M]信息。由于标记CLINIC-metal的困难,CLINIC-metal在我们的监督训练阶段被剔除。

图片

Table 2 (a) The DC and HD results for different models tested on ‘ALL’ dataset. (b) Effect of different post-processing methods on ‘ALL’ dataset. ‘ALL’ refers to the six metal-free sub-datasets. ‘Average’ refers to the mean value of four anatomical structures’ DC/HD. ‘Whole’ refers to treating sacrum, left hip, right hip, and lumbar spine as a whole bone. The top three numbers in each part are marked in bold, red, and blue

表 2 (a) 在‘ALL’数据集上测试的不同模型的DC和HD结果。(b)不同后处理方法在‘ALL’数据集上的效果。‘ALL’指的是六个无金属伪影的子数据集。‘Average’指的是四个解剖结构的DC/HD的平均值。‘Whole’指的是将骶骨、左髋、右髋和腰椎视为一个整体骨骼。每部分前三个数字以粗体、红色和蓝色标记。

图片

Table 3 The ‘Average’ DC and HD results for different models tested on different datasets. Please refer to the Online Resource 1 for details. The top three numbers in each part are marked in bold, red, and blue

表 3 在不同数据集上测试的不同模型的‘平均’DC和HD结果。详情请参阅在线资源1。每部分前三个数字以粗体、红色和蓝色标记。

相关文章:

文献速递:人工智能医学影像分割--- 深度学习分割骨盆骨骼:大规模CT数据集和基线模型

文献速递:人工智能医学影像分割— 深度学习分割骨盆骨骼:大规模CT数据集和基线模型 我们为大家带来人工智能技术在医学影像分割上的应用文献。 人工智能在医学影像分析中发挥着至关重要的作用,尤其体现在图像分割技术上。这项技术的目的是准…...

PaddleNLP的简单使用

1 介绍 PaddleNLP是一个基于PaddlePaddle深度学习平台的自然语言处理(NLP)工具库。 它提供了一系列用于文本处理、文本分类、情感分析、文本生成等任务的预训练模型、模型组件和工具函数。 PaddleNLP有统一的应用范式:通过 paddlenlp.Task…...

2. MySQL 多实例

重点: MySQL 的 三种安装方式:包安装,二进制安装,源码编译安装。 MySQL 的 基本使用 MySQL 多实例 DDLcreate alter drop DML insert update delete DQL select 2.5)通用 二进制格式安装 MySQL 2.5.1&#xff…...

两个五层决策树和一个十层决策树的区别

随机森林的弹性: 随机森林中的多个决策树是相互独立构建的,因此两个五层决策树和一个十层决策树之间的区别可能在于它们对训练数据的不同学习。这种弹性有助于模型更好地适应不同的数据模式。 过拟合风险: 十层决策树可能更容易过拟合训练数据,尤其是在数…...

案例分析技巧-软件工程

一、考试情况 需求分析(※※※※)面向对象设计(※※) 二、结构化需求分析 数据流图 数据流图的平衡原则 数据流图的答题技巧 利用数据平衡原则,比如顶层图的输入输出应与0层图一致补充实体 人物角色:客户、…...

如何使用docker compose安装APITable并远程访问登录界面

文章目录 前言1. 部署APITable2. cpolar的安装和注册3. 配置APITable公网访问地址4. 固定APITable公网地址 正文开始前给大家推荐个网站,前些天发现了一个巨牛的 人工智能学习网站, 通俗易懂,风趣幽默,忍不住分享一下给大家。 …...

深入了解Matplotlib中的子图创建方法

深入了解Matplotlib中的子图创建方法 一 add_axes( **kwargs):1.1 函数介绍1.2 示例一 创建第一张子图1.2 示例二 polar参数的运用1.3 示例三 创建多张子图 二 add_subplot(*args, **kwargs):2.1 函数介绍2.2 示例一 三 两种方法的区别3.1 参数形式3.2 布局灵活性3.3 适用场景3…...

云计算运维 · 第三阶段 · git

学习b记 第三阶段 三、持续集成 1、git #安装 yum -y install git[rootgit-git ~]# git config –-global user.name "qxl" # 配置git使用用户 [rootgit-git ~]# git config –-global user.email "qxlmail.com" # 配置git使用邮箱 [rootgit-git ~]# g…...

【幻兽帕鲁】开服务器,高性能高带宽(100mbps),免费!!!【学生党强推】

【幻兽帕鲁】开服务器,高性能高带宽(100mbps),免费!!!【学生党强推】 教程相关视频地址:https://www.bilibili.com/video/BV16e411Y7Fd/ 目前幻兽帕鲁开服务器有以下几套比较性价比的…...

微信小程序|推箱子小游戏

推箱子游戏是一种经典的益智游戏,通过移动箱子将其推到指定位置,完成关卡的过程。随着小程序的发展,越来越多的人开始在手机上玩推箱子游戏。本文将介绍如何利用小程序实现推箱子游戏,并分享一些技术实现的方法。 目录 引言游戏背景介绍游戏规则及挑战技术实现步骤创建游戏…...

【Linux】—— 信号的产生

本期,我们今天要将的是信号的第二个知识,即信号的产生。 目录 (一)通过终端按键产生信号 (二)调用系统函数向进程发信号 (三)由软件条件产生信号 (四)硬件…...

【算法】Hash 算法-关注优化细节

//给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 // // 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 // // // // 示例 1: // // //输入:nums [100,4…...

回归预测 | Matlab实现CPO-SVR冠豪猪优化支持向量机的数据多输入单输出回归预测

回归预测 | Matlab实现CPO-SVR冠豪猪优化支持向量机的数据多输入单输出回归预测 目录 回归预测 | Matlab实现CPO-SVR冠豪猪优化支持向量机的数据多输入单输出回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现CPO-SVR冠豪猪优化支持向量机的数据多输入…...

Idea设置代理后无法clone git项目

背景 对于我们程序员来说,经常上github找项目、找资料是必不可少的,但是一些原因,我们访问的时候速度特别的慢,需要有个代理,才能正常的访问。 今天碰到个问题,使用idea工具 clone项目,速度特…...

tkMapper 通用mapper的批量更新 批量新增 官方实现 springboot项目 依赖引入

文章目录 场景官方插件源码解析项目细节小结 场景 在许多业务场景下,需要对tkMapper的功能进行增强,需要用到批量新增和批量更新(这里是唯一主键去更新的),许多论文博客自己写的看起来并不行,我们这里就采…...

【leetcode刷刷】回溯:77.组合

77. 组合 第一次专门做回溯,有点难理解。首先可以理解回溯可以可视化为树的搜索,因此这道题,树的宽度为n,树的深度为kpath作为一个参数传入有点难想回溯没有返回值剪纸更难想,通过列算式可以勉强得到for的表达式&…...

【OOP】Python的OOP编程笔记

1.类变量和实例变量 类变量:变量属于类,在对象中是共用的。访问方式为类名.变量名,或对象名.__class__.变量名 实例变量:定义在方法中的变量,属于具体对象。访问方式为对象名.变量名 类变量访问方式 class Car:# nu…...

一进一出模拟量信号隔离变送器

一进一出模拟量信号隔离变送器 捷晟达科技推出一进一出模拟量信号隔离变送器 深圳捷晟达科技推出一款具有隔离,放大,转换保护功能的一进一出的小型隔离变送器设备,该设备可以把模拟量(4-20mA/0-10V等)标准信号转换用户需要的信号,该产品具有抗EMC干扰,可以有效的保护后级设备安…...

Mybatis-plus原生pages分页未生效的解决方案

文章目录 前言原因1、Mybatis Plus版本的问题2、Mapper.xml文件中SQL语句格式问题3、Mybatis Plus默认分页拦截器问题4、分页参数传参问题5、分页配置的问题 解决方案1、升级对应的Mybatis-plus版本分页插件配置问题3、自定义分页拦截器4、正确的参数5、不同版本的配置文件3.4.…...

【linux】-centos7版本前后-变化篇

1.centos7版本前后区别 首先文件系统变化,由EXT4,变为XFS格式。可支持容量500TB的文件,而6代仅能支持16TB。首个进程变为systemd, 替换了熟悉的init进程。它的特点是功能强大,体积也很强大。 systemd给我们带来了一个全家桶命令&…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

python/java环境配置

环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...