【Spark系列6】如何做SQL查询优化和执行计划分析
Apache Spark SQL 使用 Catalyst 优化器来生成逻辑执行计划和物理执行计划。逻辑执行计划描述了逻辑上如何执行查询,而物理执行计划则是 Spark 实际执行的步骤。
一、查询优化
示例 1:过滤提前
未优化的查询
val salesData = spark.read.parquet("hdfs://sales_data.parquet")
val result = salesData.groupBy("product_id").agg(sum("amount").alias("total_sales")).filter($"total_sales" > 1000)
优化后的查询
val salesData = spark.read.parquet("hdfs://sales_data.parquet")
val filteredData = salesData.filter($"amount" > 1000)
val result = filteredData.groupBy("product_id").agg(sum("amount").alias("total_sales"))
优化解释:通过在聚合之前应用过滤,减少了聚合操作处理的数据量,从而减少了执行时间和资源消耗。
示例 2:使用广播连接
未优化的查询
val largeTable = spark.read.parquet("hdfs://large_table.parquet")
val smallTable = spark.read.parquet("hdfs://small_table.parquet")
val result = largeTable.join(smallTable, Seq("key"))
优化后的查询
import org.apache.spark.sql.functions.broadcastval largeTable = spark.read.parquet("hdfs://large_table.parquet")
val smallTable = spark.read.parquet("hdfs://small_table.parquet")
val result = largeTable.join(broadcast(smallTable), Seq("key"))
优化解释:如果有一个小表和一个大表需要连接,使用广播连接可以将小表的数据发送到每个节点,减少数据传输和shuffle操作,提高查询效率。
示例 3:避免不必要的Shuffle操作
未优化的查询
val transactions = spark.read.parquet("hdfs://transactions.parquet")
val result = transactions.repartition(100, $"country").groupBy("country").agg(sum("amount").alias("total_amount"))
优化后的查询
val transactions = spark.read.parquet("hdfs://transactions.parquet")
val result = transactions.groupBy("country").agg(sum("amount").alias("total_amount"))
优化解释:repartition
会导致全局shuffle,而如果后续的操作是按照同一个键进行聚合,这个操作可能是不必要的,因为groupBy
操作本身会引入shuffle。
示例 4:处理数据倾斜
未优化的查询
val skewedData = spark.read.parquet("hdfs://skewed_data.parquet")
val referenceData = spark.read.parquet("hdfs://reference_data.parquet")
val result = skewedData.join(referenceData, "key")
优化后的查询
val skewedData = spark.read.parquet("hdfs://skewed_data.parquet")
val referenceData = spark.read.parquet("hdfs://reference_data.parquet")
val saltedSkewedData = skewedData.withColumn("salted_key", concat($"key", lit("_"), (rand() * 10).cast("int")))
val saltedReferenceData = referenceData.withColumn("salted_key", explode(array((0 to 9).map(lit(_)): _*))).withColumn("salted_key", concat($"key", lit("_"), $"salted_key"))
val result = saltedSkewedData.join(saltedReferenceData, "salted_key").drop("salted_key")
优化解释:当存在数据倾斜时,可以通过给键添加随机后缀(称为salting)来分散倾斜的键,然后在连接后去除这个后缀。
示例 5:缓存重用的DataFrame
未优化的查询
val dataset = spark.read.parquet("hdfs://dataset.parquet")
val result1 = dataset.filter($"date" === "2024-01-01").agg(sum("amount"))
val result2 = dataset.filter($"date" === "2024-01-02").agg(sum("amount"))
优化后的查询
val dataset = spark.read.parquet("hdfs://dataset.parquet").cache()
val result1 = dataset.filter($"date" === "2024-01-01").agg(sum("amount"))
val result2 = dataset.filter($"date" === "2024-01-02").agg(sum("amount"))
优化解释:如果同一个数据集被多次读取,可以使用cache()
或persist()
方法将数据集缓存起来,避免重复的读取和计算。
在实际应用中,优化Spark SQL查询通常需要结合数据的具体情况和资源的可用性。通过观察Spark UI上的执行计划和各个stage的详情,可以进一步诊断和优化查询性能。
二、执行计划分析
逻辑执行计划
逻辑执行计划是对 SQL 查询语句的逻辑解释,它描述了执行查询所需执行的操作,但不涉及具体如何在集群上执行这些操作。逻辑执行计划有两个版本:未解析的逻辑计划(unresolved logical plan)和解析的逻辑计划(resolved logical plan)。
举例说明
假设我们有一个简单的查询:
SELECT name, age FROM people WHERE age > 20
在 Spark SQL 中,这个查询的逻辑执行计划可能如下所示:
== Analyzed Logical Plan ==
name: string, age: int
Filter (age#0 > 20)
+- Project [name#1, age#0]+- Relation[age#0,name#1] parquet
这个逻辑计划的组成部分包括:
Relation
: 表示数据来源,这里是一个 Parquet 文件。Project
: 表示选择的字段,这里是name
和age
。Filter
: 表示过滤条件,这里是age > 20
。
物理执行计划
物理执行计划是 Spark 根据逻辑执行计划生成的,它包含了如何在集群上执行这些操作的具体细节。物理执行计划会考虑数据的分区、缓存、硬件资源等因素。
举例说明
对于上面的逻辑执行计划,Spark Catalyst 优化器可能生成以下物理执行计划:
== Physical Plan ==
*(1) Project [name#1, age#0]
+- *(1) Filter (age#0 > 20)+- *(1) ColumnarToRow+- FileScan parquet [age#0,name#1] Batched: true, DataFilters: [(age#0 > 20)], Format: Parquet, Location: InMemoryFileIndex[file:/path/to/people.parquet], PartitionFilters: [], PushedFilters: [IsNotNull(age), GreaterThan(age,20)], ReadSchema: struct<age:int,name:string>
这个物理执行计划的组成部分包括:
FileScan
: 表示数据的读取操作,这里是从 Parquet 文件读取。ColumnarToRow
: 表示数据格式的转换,因为 Parquet 是列式存储,需要转换为行式以供后续操作。Filter
: 表示过滤操作,这里是执行age > 20
的过滤条件。Project
: 表示字段选择操作,这里是选择name
和age
字段。
物理执行计划还包含了一些优化信息,例如:
Batched
: 表示是否批量处理数据,这里是true
。DataFilters
: 实际应用于数据的过滤器。PushedFilters
: 表示已推送到数据源的过滤器,这可以减少从数据源读取的数据量。
要查看 Spark SQL 查询的逻辑和物理执行计划,可以在 Spark 代码中使用.explain(true)
方法:
val df = spark.sql("SELECT name, age FROM people WHERE age > 20")
df.explain(true)
这将输出上述的逻辑和物理执行计划信息,帮助开发者理解和优化查询。
相关文章:
【Spark系列6】如何做SQL查询优化和执行计划分析
Apache Spark SQL 使用 Catalyst 优化器来生成逻辑执行计划和物理执行计划。逻辑执行计划描述了逻辑上如何执行查询,而物理执行计划则是 Spark 实际执行的步骤。 一、查询优化 示例 1:过滤提前 未优化的查询 val salesData spark.read.parquet(&quo…...

Observability:在 Elastic Stack 8.12 中使用 Elastic Agent 性能预设
作者:来自 Elastic Nima Rezainia, Bill Easton 8.12 中 Elastic Agent 性能有了重大改进 最新版本 8.12 标志着 Elastic Agent 和 Beats 调整方面的重大转变。 在此更新中,Elastic 引入了 Performance Presets,旨在简化用户的调整过程并增强…...

空间数据分析和空间统计工具库PySAL入门
空间数据分析是指利用地理信息系统(GIS)技术和空间统计学等方法,对空间数据进行处理、分析和可视化,以揭示数据之间的空间关系和趋势性,为决策者提供有效的空间决策支持。空间数据分析已经被广泛运用在城市规划、交通管理、环境保护、农业种植…...

LabVIEW电液伺服控制系统
介绍了如何利用ARM微处理器和LabVIEW软件开发一个高效、精准的电液伺服控制系统。通过结合这两种技术,我们能够提高系统的数字化程度、集成化水平,以及控制精度,从而应对传统电液伺服控制器面临的问题。 该电液伺服控制系统由多个关键部分组…...
Dubbo_入门
系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 Dubbo_入门 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、什么是分布式系统二、什么…...

Ubuntu22.04更换软件源
本文以Ubuntu22.04更换科大源为例演示更改软件源的方法,其他版本的Ubuntu系统或更换其他软件源,如清华源,阿里源等,方法类似。 前言 中国科学技术大学开源软件镜像由中国科学技术大学网络信息中心提供支持。 mirrors.ustc.edu.…...
解密Android某信聊天记录
前置条件 frida, frida-tools, adb 获取密码 h.js console.log(script loaded successfully);function xx() {function strf(str, replacements) {return str.replace(/\$\{\w\}/g, function(placeholderWithDelimiters) {var placeholderWithoutDelimiters placeholderWi…...

海外云手机对于亚马逊卖家的作用
近年来,海外云手机作为一种新型模式迅速崭露头角,成为专业的出海SaaS平台软件。海外云手机在云端运行和存储数据,通过网页端操作,将手机芯片放置在机房,通过网络连接到服务器,为用户提供便捷的上网功能。因…...
交换机的发展历史
交换机发展历史是什么,详细介绍每代交换机的性能特点,特色功能 交换机的发展历史可以大致分为以下几个阶段,每个阶段的设备性能特点和特色功能有所差异: 1. 第一代以太网交换机(1980年代末至1990年代初) …...

用katalon解决接口/自动化测试拦路虎--参数化
不管是做接口测试还是做自动化测试,参数化肯定是一个绕不过去的坎。 因为我们要考虑到多个接口都使用相同参数的问题。所以,本文将讲述一下katalon是如何进行参数化的。 全局变量 右侧菜单栏中打开profile,点击default,打开之后…...

CSRF靶场练习
简述:CSRF漏洞实际很少;条件限制很多;局限性很大;实验仅供参考,熟悉csrf概念和攻击原理即可 Pikachu靶场 CSRF GET 登录用户vince的账户可以看到用户的相关信息; 点击修改个人信息,发现数据包…...
pgsql的查询语句有没有走索引
使用EXPLAIN ANALYZE命令: EXPLAIN ANALYZE [ ( option [, ...] ) ]statement示例: EXPLAIN ANALYZE SELECT * FROM employees WHERE age > 30;在执行计划中,如果看到索引扫描(Index Scan)或位图堆扫描࿰…...

jenkins部署(docker)
docker部署,避免安装tomcat 1.拉镜像 docker pull jenkins/jenkins2.宿主机创建文件夹 mkdir -p /lzp/jenkins_home chmod 777 /lzp/jenkins_home/3.启动容器 docker run -d -p 49001:8080 -p 49000:50000 --privilegedtrue -v /lzp/jenkins_home:/var/jenkins_…...

Python实现时间序列分析AR定阶自回归模型(ar_select_order算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 时间序列分析中,AR定阶自回归模型(AR order selection)是指确定自回…...

Springboot自定义线程池实现多线程任务
1. 在启动类添加EnableAsync注解 2.自定义线程池 package com.bt.springboot.config;import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.scheduling.concurrent.ThreadPoolTask…...

linux离线升级openssh方法
检查openssh版本: 升级前openssh 版本为7.4 openssl 版本为1.0.2k Openssh9.6 所需openssl >1.1.1 因此openssl也需要升级。 为了防止升级失败,无法使用SSH登录,首先安装telnet 预防。查看是否安装了telnet 客户端及服务 未安装tel…...

(五)MySQL的备份及恢复
1、MySQL日志管理 在数据库保存数据时,有时候不可避免会出现数据丢失或者被破坏,这样情况下,我们必须保证数据的安全性和完整性,就需要使用日志来查看或者恢复数据了 数据库中数据丢失或被破坏可能原因: 误删除数据…...

VitePress-04-文档中的表情符号的使用
说明 vitepress 的文档中是支持使用表情符号的,像 😂 等常用的表情都是支持的。 本文就来介绍它的使用方式。 使用语法 语法 : :表情名称: 例如 : :joy: 😂 使用案例代码 # 体会【表情】的基本使用 > hello world …...
Redis客户端之Redisson(二)Redisson组件
Redisson的几个常用客户端 一、RedissonClient 1、创建 通过Config对象配置RedissonClient所需要的参数,然后获取RedissonClient对象即可。 Config config new Config(); config.useSingleServer().setAddress("redis://127.0.0.1:6379"); RedissonC…...

用Visual Studio Code创建JavaScript运行环境【2024版】
用Visual Studio Code创建JavaScript运行环境 JavaScript 的历史 JavaScript 最初被称为 LiveScript,由 Netscape(Netscape Communications Corporation,网景通信公司)公司的布兰登艾奇(Brendan Eich)在 …...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...