机器学习系列-2 线性回归训练损失
机器学习系列-2 线性回归&训练损失
学习内容来自:谷歌ai学习
https://developers.google.cn/machine-learning/crash-course/framing/check-your-understanding?hl=zh-cn
本文作为学习记录
1 线性回归:
举例:蝉(昆虫物种)在天气炎热的日子里会比在更冷的日子里鸣叫。数十年来,专业和业余科学家一直在编制每分钟的鸣叫声和温度方面的数据。
该图表显示了温度随着鸣叫声次数的增加而上升。 鸣叫声与温度之间的关系是线性关系吗?可以,您可以绘制一条直线来大致说明这种关系:

虽然这个直线并未穿过每一个点,但清晰地显示了鸣叫声和温度之间的关系。使用直线的等式,您可以写出这种关系,如下所示:

按照机器学习的惯例,您为模型算式的过程会略有不同:
y = mx + b
y’ = b + w 1 w_{1} w1 x 1 x_{1} x1

其中b为 bias,w为weight
2 训练和损失
训练模型只需从有标签样本中学习(确定)所有权重和偏差的理想值。 在监督式学习中,机器学习算法通过检查许多示例并尝试找到将损失降至最低的模型来构建模型;此过程称为经验风险最小化。
损失是错误预测的惩罚。也就是说,损失是一个表示模型在单个样本上的预测质量的数字。如果模型的预测完全准确,则损失为零,否则损失会更大。训练模型的目的是从所有样本中找到一组平均损失“较小”的权重和偏差。例如,图 3 左侧显示的是高损失模型,右侧显示的是低损失模型。对于该图,请注意以下几点:

- 箭头表示损失。
- 蓝线表示预测。
图 3. 左侧模型中的损失较高;右侧模型中的损失较低。
2.1 通过创建数学函数(损失函数),以有意义的方式汇总各个损失。
平方损失函数:一种常用的损失函数
我们在此探讨的线性回归模型使用一种称为
| 平方损失函数(也称为L2 损失 ) |
= the square of the difference between the label and the prediction=(标签和预测之间的差值的平方)= (observation - prediction(x))2= (y - y')2
均方误差 (MSE) 是指整个数据集中每个样本的平均平方损失。
如需计算 MSE,请先计算各个样本的所有平方损失之和,然后除以样本数量:

虽然 MSE 常用于机器学习,但它既不是唯一实用的损失函数,也不是适用于所有情况的最佳损失函数。
3.均方误差 (MSE) 的使用举例
均方误差 (MSE) 怎么计算和使用?

计算:
线上的 6 个示例发生的总损失为 0。四个不在线的样本并未远离离线,因此,即便使它们的平方变平方仍会产生较低的值:

相关文章:
机器学习系列-2 线性回归训练损失
机器学习系列-2 线性回归&训练损失 学习内容来自:谷歌ai学习 https://developers.google.cn/machine-learning/crash-course/framing/check-your-understanding?hlzh-cn 本文作为学习记录1 线性回归: 举例:蝉(昆虫物种&…...
spring-boot-actuator 服务监控
1 概述 服务启动时,通过spring-boot-actuator 监控es等服务是否连接成功等 2 依赖 <!-- 服务监控 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId><…...
窥探向量乘矩阵的存内计算原理—基于向量乘矩阵的存内计算
在当今计算领域中,存内计算技术凭借其出色的向量乘矩阵操作效能引起了广泛关注。本文将深入研究基于向量乘矩阵的存内计算原理,并探讨几个引人注目的代表性工作,如DPE、ISAAC、PRIME等,它们在神经网络和图计算应用中表现出色&…...
Python flask 表单详解
文章目录 1 概述1.1 request 对象 2 示例2.1 目录结构2.2 student.html2.3 result.html2.4 app.py 1 概述 1.1 request 对象 作用:来自客户端网页的数据作为全局请求对象发送到服务器request 对象的重要属性如下: 属性解释form字典对象,包…...
【Tomcat与网络3】Tomcat的整体架构
目录 1.演进1:将连接和处理服务分开 2演进2:Container的演进 3 再论Tomcat的容器结构 4 Tomcat处理请求的过程 5 请求的处理过程与Pipeline-Valve管道 在前面我们介绍了Servlet的基本原理,本文我们结合Tomcat来分析一下如何设计一个大型…...
k8s中cert-manager管理https证书
前言 目前https是刚需,但证书又很贵,虽然阿里云有免费的,但没有泛域名证书,每有一个子域名就要申请一个证书,有效期1年,1年一到全都的更换,太麻烦了。经过搜索,发现了自动更新证书神器cert-manager;当然cert-manager是基于k8s的。 安装采用Helm方式 Chart地址: ht…...
如何搭建私有云盘SeaFile并实现远程访问本地文件资料
🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-hsDnDEybLME85dTx {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…...
Centos7安装Nginx-1.21
一、编译前提,需要安装必要的包 yum install gcc pcre-devel openssl-devel zlib-devel wget -y 二、下载对应的NGINX包 wget http://nginx.org/download/nginx-1.21.0.tar.gz 三、解压nginx tar xf nginx-1.21.0.tar.gz 四、编译并安装nginx到/usr/local/ng…...
React 面试题
1、组件通信的方式 父组件传子组件:通过props 的方式 子组件传父组件:父组件将自身函数传入,子组件调用该函数,父组件在函数中拿到子组件传递的数据 兄弟组件通信:找到共同的父节点,用父节点转发进行通信 …...
Postgresql使用update
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 解决问题一、关联表更新1.关联一张表2.关联多张表 二、根据状态更新为不同的值 解决问题 通过多张关联表更新主表的字段,根据状态更新为不同的值。 一、…...
Django视图函数技巧,从入门到实战
文章目录 Django视图函数1.request对象的方法2.视图函数的常用的返回对象(1)response对象(2)JsonResponse对象(3)redirect() :给浏览器了一个30x的状态码 3.设置响应头和状态码(1&am…...
部署实战--修改jar中的文件并重新打包成jar文件
一.jar文件 JAR 文件就是 Java Archive ( Java 档案文件),它是 Java 的一种文档格式JAR 文件与 ZIP 文件唯一的区别就是在 JAR 文件的内容中,多出了一个META-INF/MANIFEST.MF 文件META-INF/MANIFEST.MF 文件在生成 JAR 文件的时候…...
RT-Thread线程管理(使用篇)
layout: post title: “RT-Thread线程管理” date: 2024-1-26 15:39:08 0800 tags: RT-Thread 线程管理(使用篇) 之后会做源码分析 线程是任务的载体,是RTT中最基本的调度单位。 线程执行时的运行环境称为上下文,具体来说就是各个变量和数据,…...
【HarmonyOS】鸿蒙开发之ArkTs初步认识——第2.1章
ArkTs简介 ArkTS是HarmonyOS优选的主力应用开发语言。ArkTS围绕应用开发在TypeScript(简称TS)生态基础上做了进一步扩展,继承了TS的所有特性,是TS的超集。 以下图可以展示Js,TS,ArkTs的关系 ArkTs基础语…...
随手记:uni-app中使用iconfont彩色图标
1、打开阿里巴巴矢量库 2、将下载的压缩文件解压,cmd打开控制台 3、安装npm install -g iconfont-tools(首次使用安装) 4、输入iconfont-tools会生成一个文件夹 5、打开这个文件夹,用里面的相应的css就行...
02-OpenFeign-微服务接入
1、依赖 由于是spring cloud项目,注意spring-boot、cloud、alibaba的版本兼容性 1.1、父级依赖 <properties><java.version>1.8</java.version><spring-boot.version>2.7.18</spring-boot.version><spring.cloud.version>20…...
【前端工程化】环境搭建 nodejs npm
文章目录 前端工程化是什么?前端工程化实现技术栈前端工程化环境搭建 :什么是Nodejs如何安装nodejsnpm 配置和使用npm 介绍npm 安装和配置npm 常用命令 总结 前端工程化是什么? 前端工程化是使用软件工程的方法来单独解决前端的开发流程中模块…...
在VM虚拟机搭建NFS服务器
NFS共享要求如下: (1)共享“/mnt/自已姓名的完整汉语拼音”目录,允许XXX网段的计算机访问该共享目录,可进行读写操作。(说明:XXX网段,请根据你的规划,再具体指定…...
springboot并mybatis入门启动
pom.xml,需要留意jdk的版本(11)和springboot版本要匹配(2.7.4),然后还要注意mybatis启动l类的版本(2.2.2) <?xml version"1.0" encoding"UTF-8"?> <project xm…...
什么是单例模式与饿汉式单例模式的区别是什么?
什么是单例模式与饿汉式单例模式的区别是什么? 单例模式和饿汉式单例模式都是软件设计模式,它们的区别在于实例的创建时间和线程安全性。 单例模式是一种设计模式,确保一个类只有一个实例,并提供一个全局访问点。单例模式可以保…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...
ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
