当前位置: 首页 > news >正文

极值图论基础

目录

一,普通子图禁图

二,Turan问题

三,Turan定理、Turan图

1,Turan定理

2,Turan图

四,以完全二部图为禁图的Turan问题

1,最大边数的上界

2,最大边数的下界

五,以偶圈为禁图的Turan问题

六,Ramsey问题

1,Ramsey定理

2,Ramsey问题


一,普通子图禁图

参考普通子图

普通子图禁图指的是,给出一些具体的图,描述某个图不以这些具体的图作为普通子图。

二,Turan问题

给出一个图集F,求以F为普通子图禁图的图的最大边数,以及取到最大值的图是什么?

即,一个图最多能有多少条边,使得不以F中的任意图为普通子图。

PS:我们只关心简单图,否则如果2个点之间连无穷条多重边,那就没意义了。

PS:取到最大值的图称为极图,如果有唯一的极图,我们就说满足条件的极图是什么,不需要赘述边数了。

三,Turan定理、Turan图

1,Turan定理

以完全图K(r+1)为禁图的极图是平衡完全r部图,且没有其他极图。

2,Turan图

n个点的平衡完全r部图也叫图兰图Tr,n,即把n个点平均分成r份得到的完全r部图。

所以也可以说以完全图K(r+1)为禁图的n个点的图,唯一的极图是图兰图Tr,n

比如,以完全图K4为禁图的8个点的图,唯一的极图是T3,8:

实际上,图兰图Tr,n的边数就是(p^2r+pr+n^2-n)/2-pn,其中p=n/r

比如T3,8,n=8,r=3,p=2,(p^2r+pr+n^2-n)/2-pn=(12+6+64-8)/2-16=21

四,以完全二部图为禁图的Turan问题

1,最大边数的上界

定理:对于任意s>=t>=2,存在常数C,对于任意n,以完全二部图Ks,t为禁图的图的边数不超过Cn^{2-1/t}

猜想:对于任意s>=t>=2,以完全二部图Ks,t为禁图的图的最大边数为\Theta (n^{2-1/t})

其中,θ是渐进相等的符号。

2,最大边数的下界

存在常数C,对于任意t>=2,任意s>C^t,以完全二部图Ks,t为禁图的图的最大边数为\Theta (n^{2-1/t})

已经很接近上面的猜想了,但还没完全解决。

五,以偶圈为禁图的Turan问题

定理:对于任意k>=2,以2k个点构成的偶圈为禁图的图的边数不超过100k\cdot n^{1+1/k}

猜想:对于任意k>=2,以2k个点构成的偶圈为禁图的图的边数为\Theta(n^{1+1/k})

六,Ramsey问题

1,Ramsey定理

对于任意的s>1,t>1,一定存在一个整数N,对于任意N个点的图,要么存在s个点两两相连,要么存在t个点两两不相连。

我们把满足条件的最小N记做R(s,t)

2,Ramsey问题

Ramsey问题就是R(s,t)的大小和性质。

R(s,t)\leq \binom{s+t-2}{s-1}

相关文章:

极值图论基础

目录 一,普通子图禁图 二,Turan问题 三,Turan定理、Turan图 1,Turan定理 2,Turan图 四,以完全二部图为禁图的Turan问题 1,最大边数的上界 2,最大边数的下界 五,…...

word导出链接

java 使用 POI 操作 XWPFDocumen 创建和读取 Office Word 文档基础篇 https://www.cnblogs.com/mh-study/p/9747945.html word标签解析文档 http://www.datypic.com/sc/ooxml/e-w_tbl-1.html...

(delphi11最新学习资料) Object Pascal 学习笔记---第4章第2.5节(重载和模糊调用)

4.2.5 重载和模糊调用 ​ 当调用一个重载的函数时,编译器通常会找到匹配的版本并正确工作,或者如果没有任何重载版本具有正确匹配的参数(正如我们刚刚看到的),则会报出错误。 ​ 但还有第三种情况:假设编…...

ElementUI Data:Table 表格

ElementUI安装与使用指南 Table 表格 点击下载learnelementuispringboot项目源码 效果图 el-table.vue&#xff08;Table表格&#xff09;页面效果图 项目里el-table.vue代码 <script> export default {name: el_table,data() {return {tableData: …...

11.2 OpenGL可编程顶点处理:细分着色器

细分 Tessellation Tessellation&#xff08;细分&#xff09;是计算机图形学中的一种技术&#xff0c;用于在渲染过程中提高模型表面的几何细节。它通过在原始图元&#xff08;如三角形、四边形或补丁&#xff09;之间插入新的顶点和边&#xff0c;对图元进行细化分割&#x…...

微软正在偷走你的浏览记录,Edge浏览器偷疯了

虽然现在 Edge 浏览器相当强大&#xff0c;甚至在某种程度上更符合中国用户的使用体验&#xff1b;但最近新的Edge浏览器推出后一直在使用的用户应该有感受到&#xff0c;原本的冰清玉洁的转校生慢慢小鸡脚藏不住了&#xff0c;广告越来越多&#xff0c;越来越流氓了。 电脑之前…...

什么是数据库软删除,什么场景下要用软删除?(go GORM硬删除)

文章目录 什么是数据库软删除&#xff0c;什么场景下要用软删除&#xff1f;go GORM硬删除什么是数据库软删除什么场景下要用软删除 什么是数据库软删除&#xff0c;什么场景下要用软删除&#xff1f; go GORM硬删除 使用的是 GORM&#xff0c;默认启用了软删除功能&#xff…...

计算机设计大赛 深度学习+python+opencv实现动物识别 - 图像识别

文章目录 0 前言1 课题背景2 实现效果3 卷积神经网络3.1卷积层3.2 池化层3.3 激活函数&#xff1a;3.4 全连接层3.5 使用tensorflow中keras模块实现卷积神经网络 4 inception_v3网络5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; *…...

我主编的电子技术实验手册(02)——仪表与电源

本专栏是笔者主编教材&#xff08;图0所示&#xff09;的电子版&#xff0c;依托简易的元器件和仪表安排了30多个实验&#xff0c;主要面向经费不太充足的中高职院校。每个实验都安排了必不可少的【预习知识】&#xff0c;精心设计的【实验步骤】&#xff0c;全面丰富的【思考习…...

C语言----内存函数

内存函数主要用于动态分配和管理内存&#xff0c;它直接从指针的方位上进行操作&#xff0c;可以实现字节单位的操作。 其包含的头文件都是&#xff1a;string.h memcpy copy block of memory的缩写----拷贝内存块 格式&#xff1a; void *memcpy(void *dest, const void …...

【力扣】快乐数,哈希集合 + 快慢指针 + 数学

快乐数原题地址 方法一&#xff1a;哈希集合 定义函数 getNext(n) &#xff0c;返回 n 的所有位的平方和。一直执行 ngetNext(n) &#xff0c;最终只有 2 种可能&#xff1a; n 停留在 1 。无限循环且不为 1 。 证明&#xff1a;情况 1 是存在的&#xff0c;如力扣的示例一…...

c实现顺序表

目录 c语言实现顺序表 完整代码实现 c语言实现顺序表 顺序表的结构定义&#xff1a; typedef struct vector {int size; // 顺序表的容量int count; // 顺序表现在存储了多少个数据int *data; // 指针指向连续的整型存储空间 } vector;顺序表的结构操作&#xff1a; 1、初始…...

微软为新闻编辑行业推出 AI 辅助项目,记者参加免费课程

2 月 6 日消息&#xff0c;微软当地时间 5 日发布新闻稿宣布与多家新闻机构展开多项基于生成式 AI 的合作。微软表示&#xff0c;其使命是确保新闻编辑室在今年和未来拥有创新。 目前建议企业通过微软官方合作伙伴获取服务&#xff0c;可以合规、稳定地提供企业用户使用ChatGP…...

openssl3.2 - exp - buffer to BIO

文章目录 openssl3.2 - exp - buffer to BIO概述笔记END openssl3.2 - exp - buffer to BIO 概述 openssl的资料看的差不多了, 准备将工程中用到的知识点整理一下. openssl中很多API是以操作文件作为输入的, 也有很多API是以BIO作为输入的. 不管文件是不是受保护的, 如果有可…...

Android 13.0 系统framework修改低电量关机值为3%

1、讲在最前面 系统rom定制开发中&#xff0c;其中在低电量时&#xff0c;系统会自动关机&#xff0c;这个和不同的平台和底层驱动和硬件都有关系&#xff0c;需要结合这些来实际调整这个值&#xff0c;我们可以通过分析源码中电池服务的代码&#xff0c;然后进行修改如何实现…...

【EAI 013】BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning

论文标题&#xff1a;BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning 论文作者&#xff1a;Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine, Chelsea Finn 论文原文&#xff1a;https://arxiv.org…...

一文讲透ast.literal_eval() eval() json.loads()

文章目录 一文讲透ast.literal_eval() eval() json.loads()1. ast.literal_eval()2. eval()3. json.loads()4. 总结 一文讲透ast.literal_eval() eval() json.loads() 在Python库中&#xff0c;我们经常会遇到需要将字符串转换为相应对象或数据结构的情况。在这种情况下&#…...

微软.NET6开发的C#特性——类、结构体和联合体

我是荔园微风&#xff0c;作为一名在IT界整整25年的老兵&#xff0c;看到不少初学者在学习编程语言的过程中如此的痛苦&#xff0c;我决定做点什么&#xff0c;下面我就重点讲讲微软.NET6开发人员需要知道的C#特性&#xff0c;然后比较其他各种语言进行认识。 C#经历了多年发展…...

naiveui 上传图片遇到的坑 Upload

我在开发图片上传功能, 需要手动触发上传 但是我调用它内部自定义submit方法, 结果接口一直在报错400 我反反复复的测试了好就, 确定了就是我前端的问题,因为之前一直在做后端的错误排查, 以为是编译问题(因为之前也出现过这个问题) 好 , 我把其中一个参数类型改为String类型, …...

安全之护网(HVV)、红蓝对抗

文章目录 红蓝对抗什么是护网行动&#xff1f;护网分类护网的时间 什么是红蓝对抗红蓝对抗演练的目的什么是企业红蓝对抗红蓝对抗价值参考 红蓝对抗 什么是护网行动&#xff1f; 护网的定义是以国家组织组织事业单位、国企单位、名企单位等开展攻防两方的网络安全演习。进攻方…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...

Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解

文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一&#xff1a;HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二&#xff1a;Floyd 快慢指针法&#xff08;…...

CSS3相关知识点

CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...

AWS vs 阿里云:功能、服务与性能对比指南

在云计算领域&#xff0c;Amazon Web Services (AWS) 和阿里云 (Alibaba Cloud) 是全球领先的提供商&#xff0c;各自在功能范围、服务生态系统、性能表现和适用场景上具有独特优势。基于提供的引用[1]-[5]&#xff0c;我将从功能、服务和性能三个方面进行结构化对比分析&#…...