【机器学习】支持向量机(SVM)
支持向量机(SVM)
1 背景信息
-
分类算法回顾
-
决策树
-
样本的属性非数值
-
目标函数是离散的
-
-
贝叶斯学习
- 样本的属性可以是数值或非数值
- 目标函数是连续的(概率)
-
K-近邻
- 样本是空间(例如欧氏空间)中的点
- 目标函数可以是连续的也可以是离散的
-
支持向量机 (Support Vector Machine)
- 样本是空间(例如欧氏空间)中的点
- 目标函数可以是连续的也可以是离散的
-
-
背景信息
当前版本的支持向量机大部分是由 Vapnik 和他的同事在 AT&T贝尔实验室 开发的
支持向量机 (Support Vector Machine,SVM)是一个最大间隔分类器(Max Margin Classifier)
最有效的监督学习方法之一,曾被作为文本处理方法的一个强基准模型(strong baseline)
2 线性支持向量机
-
符号函数
y i = { + 1 , if f ( x i , θ ) <0 − 1 , if f ( x i , θ ) <0 y_i = \begin{cases} +1, & \text{if $f(x_i,θ)$ <0} \\ -1, & \text{if $f(x_i,θ)$ <0} \\ \end{cases} yi={+1,−1,if f(xi,θ) <0if f(xi,θ) <0
对一个测试样本 x x x,我们可以预测它的标签为 [ f ( x , θ ) ] [f(x,θ)] [f(x,θ)], f ( x , θ ) = 0 f(x,θ)=0 f(x,θ)=0 被称为分类超平面 -
线性分类器
-
线性超平面
f ( x , w , b ) = < x , w > + b = 0 f(x,w,b)=<x,w>+b=0 f(x,w,b)=<x,w>+b=0
在线性可分的情况下,有无穷多个满足条件的超平面。

-
线性分类器的间隔(Margin)
在分类分界面两侧分别放置平行于分类超平面的一个超平面,移动超平面使其远离分类超平面
当他们各自第一次碰到数据点时,他们之间的距离被称为线性分类器的间隔
Margin(间隔):分界在碰到数据点之前可以达到的宽度
-
最大间隔线性分类器——具有最大间隔的线形分类器
支持向量:那些阻挡间隔继续扩大的数据点

-
问题形式化
形式化间隔,我们需要所有数据点满足
y i ( < x i , w > + b ) ≥ 1 , ∀ i = 1 , . . . , N y_i(<x_i,w>+b)≥1,\ \forall i=1,...,N yi(<xi,w>+b)≥1, ∀i=1,...,N

分类超平面: < x , w > + b = 0 <x,w>+b=0 <x,w>+b=0,引入平行于分类超平面的两个额外超平面: < x , w > + b = ± 1 <x,w>+b=±1 <x,w>+b=±1
间隔(margin):两个新的超平面( < x , w > + b = ± 1 <x,w>+b=±1 <x,w>+b=±1)之间的距离。
间隔的表达式:两个超平面到原点的距离之差的绝对值: ∣ ρ 1 − ρ 2 ∣ = 2 ∣ w ∣ |ρ_1-ρ_2|=\frac{2}{|w|} ∣ρ1−ρ2∣=∣w∣2
-
相关文章:
【机器学习】支持向量机(SVM)
支持向量机(SVM) 1 背景信息 分类算法回顾 决策树 样本的属性非数值 目标函数是离散的 贝叶斯学习 样本的属性可以是数值或非数值目标函数是连续的(概率) K-近邻 样本是空间(例如欧氏空间)中的点目标函…...
C语言指针全解
1.什么是指针: 指针是存放地址的地方,是内存中最小单元的地址(编号),内存被分为一个个小的单元格,每一格有一个字节。比如说int a0;a会占据四个字节的大小,每个字节对应单元格都有自…...
rtt设备io框架面向对象学习-看门狗设备
1.看门狗设备基类 / components / drivers / include / drivers /下的watchdog.h 定义了如下看门狗设备基类 struct rt_watchdog_device { struct rt_device parent; const struct rt_watchdog_ops *ops; }; 看门狗设备基类的方法定义如下 struct rt_watchdog_ops { rt_err_…...
加固平板电脑丨三防智能平板丨工业加固平板丨智能城市管理
随着智能城市的不断发展,人们对于城市管理的要求也在不断提高,这就需要高效、智能的城市管理平台来实现。而三防平板就是一款可以满足这一需求的智能设备。 三防平板是一种集防水、防尘、防摔于一体的智能平板电脑,它可以在复杂的环境下稳定运…...
Redis的配置文件
目录 前言: 一、 Units 二、 INCLUDES 三、 NETWORK 3.1 bind 3.2 protected-mode 3.3 port 3.4 tcp-backlog 3.5 timeout 3.6 tcp-keepalive 3.7 示例演示 四、 GENERAL 4.1 daemonize 4.2 pidfile 4.3 loglevel 4.4 logfile 4.5 databases 五、…...
懒人精灵 之 Lua 捕获 json解析异常 ,造成的脚本停止.
Time: 2024年2月8日20:21:17 by:MemoryErHero 1 异常代码 Expected value but found T_END at character 12 异常代码 Expected value but found T_OBJ_END at character 223 处理方案 - 正确 json 示范 while true do--Expected value but found T_END at character 1--Ex…...
Python 列表操作详解
Python 是一种流行的编程语言,它以其简洁的语法和强大的功能而闻名。在 Python 中,列表是一种常用的数据结构,它可以包含任意类型的元素,并且可以随时添加或删除元素。在这篇文章中,我们将详细介绍 Python 列表的一些常…...
【Jenkins】Jenkins关闭Jenkins关闭、重启
目录 一、Jenkins关闭、重启 二、Jenkins服务的启动、停止方法。 一、Jenkins关闭、重启 1.关闭Jenkins 只需要在访问jenkins服务器的网址url地址后加上exit,关闭Jenkins服务。 例如:http://localhost:8081/exit 2.重启Jenkies 只有在Jenkins服务启动…...
【Linux】学习-动静态库
动静态库 头文件与库的区别 头文件一般而言,是声明和宏定义。头文件是在预处理阶段使用的 库文件是已经编译好的二进制代码。是一种目标文件,库文件是在链接阶段使用的 对于头文件和库我们可以这样理解,就是头文件提供的是一个函数的声明&…...
人工智能之数学基础【最小二乘法】
原理 最小二乘法由勒让德(A.M.Legendre)于1805年在其著作《计算彗星轨道的新方法》中提出,主要思想是最小化误差二次方和寻找数据的最佳匹配函数,利用最小二乘法求解未知参数,使得理论值与观测值之差(即误差,或称为残差)的二次方和达到最小,即: E = ∑ i = 1 n ϵ …...
【Java安全】ysoserial-URLDNS链分析
前言 Java安全中经常会提到反序列化,一个将Java对象转换为字节序列传输(或保存)并在接收字节序列后反序列化为Java对象的机制,在传输(或保存)的过程中,恶意攻击者能够将传输的字节序列替换为恶…...
Nginx报错合集(502 Bad Gateway,504 Gateway nginx/1.18.0 (Ubuntu) 等等报错)
1.504 Gateway Time-outnginx/1.18.0 (Ubuntu) 日志报错: 2024/02/11 04:38:54 [error] 564#564: *29 upstream timed out (110: Connection timed out) while reading response header from upstream, client: *******, server: *******, request: "GE…...
Rust开发WASM,WASM Runtime运行
安装wasm runtime curl https://wasmtime.dev/install.sh -sSf | bash 查看wasmtime的安装路径 安装target rustup target add wasm32-wasi 创建测试工程 cargo new wasm_wasi_demo 编译工程 cargo build --target wasm32-wasi 运行 wasmtime ./target/wasm32-wasi/d…...
快速重启网络服务 IP Helper
有时候,因为需要配置虚拟机,又或者网络环境复杂的情况下。win10重启后,会造成网络服务失效。所以这时候需要重启网络服务。即重启IP Helper。每次 我的电脑->鼠标右键 管理->服务和应用程序->服务->IP Helper 右键重启࿰…...
【MySQL】MySQL函数学习和总结
🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-Ny0xnYjfHqF7s3aS {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…...
MySQL进阶查询篇(7)-触发器的创建和使用
MySQL数据库触发器的创建和使用 触发器(Trigger)是MySQL数据库中非常强大且有用的功能,它可以在特定的数据库事件发生时自动执行一段预定义的代码。触发器可以用于实现数据完整性约束、自动化业务逻辑、审计日志等功能。本文将介绍MySQL数据库中触发器的创建和使用…...
前端面试题——JS实现反转链式表
前言 反转单向链表就是将整个单链表的数据进行倒序的过程。 例如,如果反转之前的单链表是0->1->2->3,那么反转之后的单链表应该是3->2->1->0。这个操作通常是通过改变链表中每个节点的指针方向来实现的,即让每个节点的指…...
小周带你正确理解Prompt-engineering,RAG,fine-tuning工程化的地位和意义
有人会说:"小周,几天不见这么拉了,现在别说算法了,连code都不讲了,整上方法论了。" 我并没有拉!而且方法论很重要,尤其工程化的时候,你总得知道每种技术到底适合干啥&…...
【精选】java多态进阶——多态练习测试
🍬 博主介绍👨🎓 博主介绍:大家好,我是 hacker-routing ,很高兴认识大家~ ✨主攻领域:【渗透领域】【应急响应】 【python】 【VulnHub靶场复现】【面试分析】 🎉点赞➕评论➕收藏…...
Git详细讲解
文章目录 一、Git相关概念二、本地分支中文件的添加 、提交2.1 文件状态2.2 创建Git仓库2.2.1 git init2.2.2 git clone 2.3 添加操作(git add)2.4 提交操作(git commit)2.5 撤销操作2.5.1 撤销 add操作2.5.2 撤销 commit操作2.5.3 覆盖上一次的commit操…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
