当前位置: 首页 > news >正文

FAST角点检测算法

FAST(Features from Accelerated Segment Test)角点检测算法是一种快速且高效的角点检测方法。它通过检测每个像素周围的连续像素集合,确定是否为角点。以下是 FAST 角点检测算法的基本流程:

FAST 角点检测算法的基本过程主要包括以下几个步骤:

  1. 选择一个候选点p作为中心点,并设置一个合适的亮度阈值T。

  2. 在候选点的周围选择一个圆形区域,通常圆周上会选择16个等间隔的点(像素),这些点称为测试点。

  3. 以点p的亮度Ip和阈值T作为参照,快速检测圆周上的16个测试点。如果存在连续的N个测试点的亮度要么都高于Ip+T,要么都低于Ip-T,则认为点p是一个角点。原始的FAST算法中N被设置为12。

  4. 用这种方式对图像中的每个像素进行测试,将满足条件的点标记为角点候选。

  5. 过滤角点候选,采用非最大值抑制算法,去除非局部最大值点,从而找到真正的角点。

一句话总结:如果一个点,和周围好多个点,都不一样,那么它就是个角点。否则,它是个稀松平常的点。
基本思想:谁是少数派?

FAST 角点检测算法通过比较灰度值之差,快速判断像素点是否为角点。它具有低计算复杂度和快速执行速度,适用于实时图像处理和高效角点检测需求的场景。该算法在计算机视觉和图像处理中广泛应用于物体识别、跟踪和图像特征提取等任务。

# -*- coding: utf-8 -*-
"""
Created on Sun Feb 11 16:32:51 2024@author: Administrator
"""import cv2# 读取图像
img = cv2.imread('image.jpg', 0)# 创建 FAST 角点检测器对象
fast = cv2.FastFeatureDetector_create()# 检测角点
kp = fast.detect(img, None)# 在图像上绘制检测到的角点
output_img = cv2.drawKeypoints(img, kp, None, color=(0,255,0), flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)# 显示结果图像
cv2.imshow('FAST Corners', output_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

相关文章:

FAST角点检测算法

FAST(Features from Accelerated Segment Test)角点检测算法是一种快速且高效的角点检测方法。它通过检测每个像素周围的连续像素集合,确定是否为角点。以下是 FAST 角点检测算法的基本流程: FAST 角点检测算法的基本过程主要包括…...

Python中使用opencv-python进行人脸检测

Python中使用opencv-python进行人脸检测 之前写过一篇VC中使用OpenCV进行人脸检测的博客。以数字图像处理中经常使用的lena图像为例,如下图所示: 使用OpenCV进行人脸检测十分简单,OpenCV官网给了一个Python人脸检测的示例程序,…...

牛客网 DP3跳台阶扩展问题

在原始跳台阶问题上,我们知道只走1,2阶台阶的话,可以推出来斐波那契数列的形式进行计算操作。但是,在这里就是1,2,3,...n阶台阶了。其实思路是一样的。 在原始台阶问题,我们的状态方…...

ARM汇编[1] 打印格式化字符串(printf

文章目录 写在前面关键知识简单加减乘除函数调用和循环系统调用栈的使用 GDB调试示例代码 写在前面 如果您对ARM汇编还一无所知的话请先参考ARM汇编hello world 本篇不会广泛详细的列举各种指令,仍然只讲解最关键的部分,然后使用他们来完成一个汇编程序…...

Java 集合、迭代器

Java 集合框架主要包括两种类型的容器,一种是集合(Collection),存储一个元素集合,另一种是图(Map),存储键/值对映射。Collection 接口又有 3 种子类型,List、Set 和 Queu…...

在 Docker 中启动 ROS2 里的 rivz2 和 rqt 出现错误的解决方法

1. 出现错误: 运行 ros2 run rivz2 rivz2 ,报错如下 : No protocol specified qt.qpa.xcb: could not connect to display :1 qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it was f…...

使用securecrt+xming通过x11访问ubuntu可视化程序

windows使用securecrtxming通过x11访问ubuntu可视化程序 windows机器IP:192.168.9.133 ubuntu-desktop20.04机器IP:192.168.9.190 windows下载xming并安装 按照图修改xming配置 开始->xming->Xlaunch 完成xming会在右下角后台运行 windows在…...

红队打靶练习:HEALTHCARE: 1

目录 信息收集 1、arp 2、nmap 3、nikto 4、whatweb 目录探测 1、gobuster 2、dirsearch WEB web信息收集 gobuster cms sqlmap 爆库 爆表 爆列 爆字段 FTP 提权 信息收集 本地提权 信息收集 1、arp ┌──(root㉿ru)-[~/kali] └─# arp-scan -l Inte…...

Java IO:概念和分类总结

前言 大家好,我是chowley,刚看完Java IO方面内容,特此总结一下。 Java IO Java IO(输入输出)是Java编程中用于处理输入和输出的API。它提供了一套丰富的类和方法,用于读取和写入数据到不同的设备、文件和…...

【Linux】基本命令(下)

目录 head指令 && tail指令 head指令 tail指令 find指令 grep指令 zip/unzip指令 tar指令 时间相关的指令 date显示 1.在显示方面,使用者可以设定欲显示的格式,格式设定为一个加号后接数个标记,其中常用的标记列表如下&…...

腾讯云游戏联机服务器配置价格表,4核16G/8核32G/4核32G/16核64G

2024年更新腾讯云游戏联机服务器配置价格表,可用于搭建幻兽帕鲁、雾锁王国等游戏服务器,游戏服务器配置可选4核16G12M、8核32G22M、4核32G10M、16核64G35M、4核16G14M等配置,可以选择轻量应用服务器和云服务器CVM内存型MA3或标准型SA2实例&am…...

面试经典150题——长度最小的子数组

​"In the midst of winter, I found there was, within me, an invincible summer." - Albert Camus 1. 题目描述 2. 题目分析与解析 首先理解题意,题目要求我们找到一个长度最小的 连续子数组 满足他们的和大于target,需要返回的是子数组的…...

业务流程

一、需求分析和设计: 在项目启动阶段,需要与业务人员和产品经理充分沟通,了解业务需求,并根据需求进行系统设计和数据库设计。这一阶段的输出通常是需求文档、系统架构设计、数据库设计等。 1.需求文档 需求文档是一份非常重要…...

ChatGPT Plus如何升级?信用卡付款失败怎么办?如何使用信用卡升级 ChatGPT Plus?

ChatGPT Plus是OpenAI提供的一种高级服务,它相较于标准版本,提供了更快的响应速度、更强大的功能,并且用户可以优先体验到新推出的功能。 尽管许多用户愿意支付 20 美元的月费来订阅 GPT-4,但在实际支付过程中,特别是…...

Spring 如何配置 bean (XML 方式)

请直接看原文:Spring 如何配置 bean (XML 方式)_spring 在哪配置bean 文件-CSDN博客 -------------------------------------------------------------------------------------------------------------------------------- Java Bean 如何配置配置到 spring 容器中 基于 XM…...

揭秘外观模式:简化复杂系统的关键设计策略

前言 外观模式(Facade Pattern)是一种结构型设计模式,它隐藏了系统的复杂性,并向客户端提供了一个可以访问系统的接口。这种类型的设计模式向现有的系统添加一个接口,来隐藏系统的复杂性。这种模式涉及到一个单一的类…...

Nginx 命令(Ubuntu)

常用命令: 1.查看错误日志: sudo vim /var/log/nginx/error.log 2.重新加载 nignx sudo systemctl reload nginx 3.立即停止Nginx服务。如果Nginx正在运行,它将被终止 sudo systemctl stop nginx 4. 禁止Nginx服务在系统重启时自动启…...

从github上拉取项目到pycharm中

有两种方法,方法一较为简单,方法二用到了git bash,推荐方法一 目录 有两种方法,方法一较为简单,方法二用到了git bash,推荐方法一方法一:方法二: 方法一: 在github上复制…...

python从入门到精通(十八):python爬虫的练习案列集合

python爬虫的练习 1.爬取天气网的北京城市历史天气数据1.1 第一种使用面向对象OOP编写爬虫1.2 第二种使用面向过程函数编写爬虫 1.爬取天气网的北京城市历史天气数据 1.1 第一种使用面向对象OOP编写爬虫 import re import requests from bs4 import BeautifulSoup import xlw…...

2.12作业

第一题:段错误。 第二题:hello world 第三题:hello 第四题:world 第五题: a: int a; b: int*a; c: int a0;int *p&a;int **q&p; d: int a[10]; e: int *a[10]; …...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂&#xff…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...