当前位置: 首页 > news >正文

二叉树 ---- 所有结点数

普通二叉树的结点数:

递归法:

对二叉树进行前序or后序遍历:

typedef struct Tree
{int data;Tree* leftChild;Tree* rightChild;
}tree,*linklist;
//计算普通二叉树的结点数
int nodenums(linklist node)
{if(node == nullptr)  return 0;  //node为空就返回0int leftnums = nodenums(node->leftChild); //左子树的数量通过递归计算出来int rightnums = nodenums(node->rightChild); //右子树的数量通过递归计算出来return leftnums + rightnums + 1;返回左子树的数量 + 右子树的数量 + 1(根结点的数量)
}

 化简写法:

typedef struct Tree
{int data;Tree* leftChild;Tree* rightChild;
}tree,*linklist;
//计算普通二叉树的结点数
int nodenums(linklist node)
{if(node == nullptr)  return 0;return 1 + nodenums(node->leftChild) + nodenums(node->rightChild);
}

 队列法:

利用BFS的思想层序遍历:

#include <queue>
typedef struct Tree
{int data;Tree* leftChild;Tree* rightChild;
}tree,*linklist;
//法二(BFS)
int coutnode(linklist node)
{queue<linklist> q; //建立新的linklist型队列qif(node == nullptr) q.push(node); //如果node不为空,就把结点node推进队列int result = 0;//result用来存结点数//BFS层序遍历while(q.empty()){int size = q.size();for(int i = 0;i < size;i++){linklist p = q.front();q.pop();result++;  //记录结点数if(p->leftChild) q.push(node->leftChild);if(p->rightChild) q.push(node->rightChild);}}return result;	
}

完全二叉树的结点数:

完全二叉树的本身会包含满二叉树,可以简便写,先判断最大的满二叉树的位置然后再利用普通二叉树的递归遍历方法进行计算

如果遇到满二叉树,则返回满二叉树的结点数,可以利用公式2^n-1,利用位运算(2 << n) - 1。

(n为深度),也可以利用我前面的文章讲述的快速幂利用递归求出二次幂。 

int nodenum(linklist node)
{if(node == nullptr)  return 0;linklist left = node->leftChild;linklist right = node->rightChild;//左右子树深度int leftdepth = 0;int rightdepth = 0;while(left){left = left->leftChild;leftdepth++;}while(right){right = right->rightChild;rightdepth++;}//如果左右子树的深度相等就是满二叉树if(leftdepth == rightdepth) return (2 << leftdepth) - 1;//满二叉树的计算结点公式2^n-1return 1 + nodenum(node->leftChild) + nodenum(node->rightChild);
}

判断平衡二叉树:

二叉树中任意结点的左右子树的深度相差不超过 1,那么它就是一棵平衡二叉树 。

所以abs(左子树深度 - 右子树深度) > 1就不是平衡二叉树。

所以先按照最大深度的计算方法递归左右子树的最大深度然后判断是否符合平衡二叉树,如果不是就return返回false,最后return返回平衡二叉树的最大深度

typedef struct Tree
{int data;Tree* leftChild;Tree* rightChild;
}tree,*linklist;
//如果不是平衡二叉树,那么就返回-1记录其不是平衡二叉树
int balancedepth(linklist node)
{int leftdepth = balancedepth(node->leftChild);if(leftdepth == -1)  return -1;int rightdepth = balancedepth(node->rightChild);if(rightdepth == -1)  return -1;if(abs(leftdepth - rightdepth) > 1)  return -1;//不平衡return 1 + max(leftdepth , rightdepth);
}

输入一棵二叉树的根结点,判断该树是不是平衡二叉树。

如果某二叉树中任意结点的左右子树的深度相差不超过 1,那么它就是一棵平衡二叉树。

注意:

  • 规定空树也是一棵平衡二叉树。
数据范围

树中节点数量 [0,500]。

样例
输入:二叉树[5,7,11,null,null,12,9,null,null,null,null]如下所示,5/ \7  11/  \12   9输出:true
struct TreeNode 
{int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:bool isBalanced(TreeNode* root) {int res = dfs(root);if(res != -1)  return true;else  return false;}int dfs(TreeNode* root){if(!root)  return 0;int leftdepth = dfs(root->left),rightdepth = dfs(root->right);if(leftdepth == -1 || rightdepth == -1)  return -1;if(abs(rightdepth - leftdepth) > 1)  return -1;return 1 + max(leftdepth , rightdepth);}
};

今天内容到这里了,感谢收看。

相关文章:

二叉树 ---- 所有结点数

普通二叉树的结点数&#xff1a; 递归法&#xff1a; 对二叉树进行前序or后序遍历&#xff1a; typedef struct Tree {int data;Tree* leftChild;Tree* rightChild; }tree,*linklist; //计算普通二叉树的结点数 int nodenums(linklist node) {if(node nullptr) return 0; …...

步步深入 k8s 使用 pv pvc sc 在 nfs 基础上共享存储

博客原文 文章目录 前言集群环境nfs 环境搭建pod 挂载 nfs架构图 pvc 方式挂载 nfs架构图 storageclass 方式动态申请 pv架构图 参考 前言 持久化卷&#xff08;Persistent Volume, PV&#xff09;允许用户将外部存储映射到集群&#xff0c;而持久化卷申请&#xff08;Persist…...

Stable Diffusion 模型下载:Disney Pixar Cartoon Type A(迪士尼皮克斯动画片A类)

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十...

Modelsim10.4安装

简介&#xff08;了解&#xff0c;可跳过&#xff09; modelsim是Mentor公司开发的优秀的HDL语言仿真软件。 它能提供友好的仿真环境&#xff0c;采用单内核支持VHDL和Verilog混合仿真的仿真器。它采用直接优化的编译技术、Tcl/Tk技术和单一内核仿真技术&#xff0c;编译仿真速…...

Java基于微信小程序的医院核酸检测服务系统,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…...

VC++ 绘制折线学习

win32 有三个绘制折线的函数&#xff1b; Polyline&#xff0c;根据给定点数组绘制折线&#xff1b; PolylineTo&#xff0c;除了绘制也更新当前位置&#xff1b; PolyPolyline&#xff0c;绘制多条折线&#xff0c;第一个参数是点数组&#xff0c;第二个参数是一个数组、指…...

速盾:dns解析和cdn加速的区别与联系

DNS解析和CDN加速是两种不同的网络技术&#xff0c;但在网站访问过程中起到了相互协作的作用。 首先&#xff0c;DNS解析&#xff08;Domain Name System&#xff09;是将域名转换为IP地址的过程。当用户输入一个网址时&#xff0c;计算机会先向本地DNS服务器发送一个查询请求…...

C++ Qt框架开发 | 基于Qt框架开发实时成绩显示排序系统(3) 保存表格数据

对上两篇篇的工作C Qt框架开发| 基于Qt框架开发实时成绩显示排序系统&#xff08;1&#xff09;-CSDN博客和C Qt框架开发 | 基于Qt框架开发实时成绩显示排序系统&#xff08;2&#xff09;折线图显示-CSDN博客继续优化&#xff0c;增加一个保存按钮&#xff0c;用于保存成绩数据…...

ChatGPT 4:新特性与优势

ChatGPT 4&#xff1a;新特性与优势 一、引言 ChatGPT 4是一款备受瞩目的人工智能模型&#xff0c;它以其强大的语言生成能力和智能回答能力&#xff0c;为用户提供了更高效、更便捷的对话体验。为了能够充分享受ChatGPT 4的各项功能&#xff0c;本文将向您详细介绍其新特性&…...

【教程】MySQL数据库学习笔记(二)——数据类型(持续更新)

写在前面&#xff1a; 如果文章对你有帮助&#xff0c;记得点赞关注加收藏一波&#xff0c;利于以后需要的时候复习&#xff0c;多谢支持&#xff01; 【MySQL数据库学习】系列文章 第一章 《认识与环境搭建》 第二章 《数据类型》 文章目录 【MySQL数据库学习】系列文章一、整…...

Servo的并发模型介绍

Servo是一个由Mozilla Research开发的实验性浏览器引擎&#xff0c;旨在为未来的网页和应用程序提供高性能的渲染。Servo的并发模型是其核心特点之一&#xff0c;它利用现代多核处理器的优势&#xff0c;通过异步编程和并行处理来提高渲染效率和响应性。以下是对Servo并发模型的…...

Vue3大事件项目(ing)

文章目录 核心内容1.大事件项目介绍2.大事件项目创建3.Eslint配置代码风格4.配置代码检查工作流问题: pnpm lint是全量检查,耗时问题,历史问题 5.目录调整6.vue-router4 路由代码解析7.引入 Element Plus 组件库8.Pinia 构建仓库 和 持久化9.Pinia 仓库统一管理 核心内容 Vue3…...

基于spring boot实现邮箱发送和邮箱验证

目录 一、邮箱发送实现1. 开通邮箱服务2. 添加邮箱依赖3.添加配置4.添加邮箱通用类5. 测试类 二、邮箱验证实现1.添加依赖2. 添加配置3.添加controller4. 测试 项目地址: https://gitee.com/nssnail/springboot-email 一、邮箱发送实现 1. 开通邮箱服务 使用qq邮箱、163邮箱都…...

华清作业day56

SQLite特性&#xff1a; 零配置一无需安装和管理配置&#xff1b;储存在单一磁盘文件中的一个完整的数据库&#xff1b;数据库文件可以在不同字节顺序的机器间自由共享&#xff1b;支持数据库大小至2TB&#xff1b;足够小&#xff0c;全部源码大致3万行c代码&#xff0c;250KB…...

【FPGA】VHDL:八段码到8421BCD码转换电路

目录 EDA设计基础练习题 &#xff1a; 实验要求如下&#xff1a; 代码 八段码到8421BCD码转换电路 8421BCD码到八段码转换电路 八段码到8421BCD~运行结果展示 8421BCD转八段码~运行结果展示 特别注意 软件&#xff1a;Quartus II 13.0 (64-bit) 语言&#xff1a;VHDL E…...

docker安装、运行

1、安装 之前有docker的话&#xff0c;需要先卸载旧版本&#xff1a; sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine 安装之前需要安装yum工具&#xff1a; sud…...

新型RedAlert勒索病毒针对VMWare ESXi服务器

前言 RedAlert勒索病毒又称为N13V勒索病毒&#xff0c;是一款2022年新型的勒索病毒&#xff0c;最早于2022年7月被首次曝光&#xff0c;主要针对Windows和Linux VMWare ESXi服务器进行加密攻击&#xff0c;到目前为止该勒索病毒黑客组织在其暗网网站上公布了一名受害者&#x…...

qt-C++笔记之判断一个QLabel上有没有load图片

qt-C笔记之判断一个QLabel上有没有load图片 code review! 在Qt框架中&#xff0c;QLabel是用来显示文本或者图片的一个控件。如果你想判断一个QLabel控件上是否加载了图片&#xff0c;你可以检查它的pixmap属性。pixmap属性会返回一个QPixmap对象&#xff0c;如果没有图片被加…...

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Menu组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之Menu组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Menu组件 以垂直列表形式显示的菜单。 子组件 包含MenuItem、MenuItemGroup子组…...

vue三种路由守卫详解

在 Vue 中&#xff0c;可以通过路由守卫来实现路由鉴权。Vue 提供了三种路由守卫&#xff1a;全局前置守卫、全局解析守卫和组件内的守卫。 全局前置守卫 通过 router.beforeEach() 方法实现&#xff0c;可以在路由跳转之前进行权限判断。在这个守卫中&#xff0c;可以根据用…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...