探索NLP中的N-grams:理解,应用与优化
简介
n-gram[1] 是文本文档中 n 个连续项目的集合,其中可能包括单词、数字、符号和标点符号。 N-gram 模型在许多与单词序列相关的文本分析应用中非常有用,例如情感分析、文本分类和文本生成。 N-gram 建模是用于将文本从非结构化格式转换为结构化格式的众多技术之一。 n-gram 的替代方法是词嵌入技术,例如 word2vec。N-grams 广泛用于文本挖掘和自然语言处理任务。
示例
通过计算每个唯一的 n 元语法在文档中出现的次数,可以创建包含 n 元语法的语言模型。这称为 bag-of-n-grams 模型。

例如[2],对于“The cow jumps over the moon”这句话。如果 N=2(称为二元模型),那么 ngram 将为:
-
the cow -
cow jumps -
jumps over -
over the -
the moon
所以在这种情况下你有 5 个 n 元语法。请注意,我们从 the->cow 转移到 cow->jumps 到 Jumps->over 等,本质上是向前移动一个单词以生成下一个二元组。
如果 N=3,则 n 元语法将为:
-
the cow jumps -
cow jumps over -
jumps over the -
over the moon
所以在这种情况下你有 4 个 n 元语法。当 N=1 时,这被称为一元语法,本质上是句子中的各个单词。当 N=2 时,称为二元组;当 N=3 时,称为三元组。当N>3时,这通常被称为多元组等等。
-
一个句子中有多少个 N-gram?
如果 X=给定句子 K 中的单词数量,则句子 K 的 n-gram 数量为:

N-gram 有什么用?
N-gram 用于各种不同的任务。例如,在开发语言模型时,n-gram 不仅用于开发一元模型,还用于开发二元模型和三元模型。谷歌和微软开发了网络规模的 n-gram 模型,可用于各种任务,例如拼写纠正、断词和文本摘要。以下是 Microsoft 公开提供的网络规模 n-gram 模型:http://research.microsoft.com/en-us/collaboration/focus/cs/web-ngram.aspx。这是一篇使用 Web N-gram 模型进行文本摘要的论文:Micropinion Generation: An Unsupervised Approach to Generating Ultra-Concise Summaries of Opinions
n-gram 的另一个用途是为有监督的机器学习模型(例如 SVM、MaxEnt 模型、朴素贝叶斯等)开发特征。其想法是在特征空间中使用二元语法等标记,而不仅仅是一元语法。但请注意,根据我的个人经验和我审阅的各种研究论文,在特征空间中使用二元组和三元组不一定会产生任何显着的改进。
Code
在 python 中生成 n-gram。
import re
def generate_ngrams(text,n):
# split sentences into tokens
tokens=re.split("\\s+",text)
ngrams=[]
# collect the n-grams
for i in range(len(tokens)-n+1):
temp=[tokens[j] for j in range(i,i+n)]
ngrams.append(" ".join(temp))
return ngrams
如果您使用的是 Python,还有另一种使用 NLTK 的方法:
from nltk import ngrams
sentence = '_start_ this is ngram _generation_'
my_ngrams = ngrams(sentence.split(), 3)
N-gram: https://www.mathworks.com/discovery/ngram.html
[2]What: https://kavita-ganesan.com/what-are-n-grams/
本文由 mdnice 多平台发布
相关文章:

探索NLP中的N-grams:理解,应用与优化
简介 n-gram[1] 是文本文档中 n 个连续项目的集合,其中可能包括单词、数字、符号和标点符号。 N-gram 模型在许多与单词序列相关的文本分析应用中非常有用,例如情感分析、文本分类和文本生成。 N-gram 建模是用于将文本从非结构化格式转换为结构化格式的…...
JAVA-数组乱序
实现步骤 假设有一组数组numbers从数组中最后一个元素开始遍历设置一个随机数作为循环中遍历到的元素之前的所有元素的下标,即可从该元素之前的所有元素中随机取出一个每次将随机取出的元素与遍历到的元素交换,即可完成乱序 实例如下: im…...

Stable Diffusion 模型下载:majicMIX reverie 麦橘梦幻
本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十...
Java开发四则运算-使用递归和解释器模式
使用递归和解释器模式 程序结构设计具体实现1. 先上最重要的实现类:ExpressionParser(最重要)2. 再上上下文测试代码:Context(程序入口,稍重要)3. 使用到的接口和数据结构(不太重要的…...

[NSSCTF]-Web:[SWPUCTF 2021 新生赛]easyrce解析
先看网页 代码审计: error_reporting(0); :关闭报错,代码的错误将不会显示 highlight_file(__FILE__); :将当前文件的源代码显示出来 eval($_GET[url]); :将url的值作为php代码执行 解题: 题目既然允许…...
5.深入理解箭头函数 - JS
什么是箭头函数? 箭头函数是指通过箭头函数表达式创建的函数,是匿名函数。 箭头函数表达式的语法更简洁,但语义有差异,所以用法上也有一些限制。尽管如此,箭头函数依旧被广泛运用在需要执行“小函数”的场景。 箭头…...

高效的工作学习方法
1.康奈尔笔记法 在这里插入图片描述 2. 5W2H法 3. 鱼骨图分析法 4.麦肯锡7步分析法 5.使用TODOLIST 6.使用计划模板(年月周) 7. 高效的学习方法 成年人的学习特点: 快速了解一个领域方法 沉浸式学习方法: 沉浸学习的判据&am…...
【MySQL】-17 MySQL综合-3(MySQL创建数据库+MySQL查看数据库+MySQL修改数据库+MySQL删除数据库+MySQL选择数据库)
MySQL创建数据库查看数据库修改数据库删除数据库选择数据库 一 MySQL创建数据库实例1:最简单的创建 MySQL 数据库的语句实例2:创建 MySQL 数据库时指定字符集和校对规则 二 MySQL查看或显示数据库实例1:查看所有数据库实例2:创建并…...

【教学类-46-08】20240212立体鱼1.0
前期做了一个立体春字 作品展示 背景需求: 在南浔古镇的非遗文化馆里看到一个新年活动折纸——年年有鱼挂饰 我从网上搜索教程,完全可以用15*15的手工纸给孩子们做一套。 折纸教程 视频暂时不能查看https://haokan.baidu.com/v?pdwisenatural&vid1…...

【JVM篇】什么是jvm
文章目录 🍔什么是Java虚拟机🛸Java虚拟机有什么用🌹Java虚拟机的功能🎈Java虚拟机的组成 🍔什么是Java虚拟机 JVM指的是Java虚拟机,本质上是一个运行在计算机上的程序,可以运行 Java字节码文件…...

Vulnhub靶场 DC-9
目录 一、环境搭建 二、信息收集 1、主机发现 2、指纹识别 三、漏洞复现 1、dirsearch目录探测 2、sqlmap注入测试 3、文件包含漏洞 4、Knockd敲门服务 5、ssh爆破 6、提权 四、提取flag 一、环境搭建 Vulnhub靶机下载: 官网地址:https://…...
day2-理解 linux 云计算
1.解释服务器是什么; 服务器是一种高性能计算机,它的主要功能是提供计算服务和资源给其他计算机使用。在网络环境中,服务器扮演着重要的角色,它们可以存储和管理大量的数据,处理网络请求,提供应用程序运行…...
Android 13.0 开启禁用系统接收短信功能
1.概述 在13.0的系统rom定制化中,在一些wifi产品的机器中,对于系统4g部分的功能需要裁剪 比如拨打电话 接听电话 短信功能等这部分 需要禁用系统对应的功能,接下来就来初步分析下系统中接收短信部分功能,然后实现禁用接收短信功能 2.禁用和启用系统短信功能实现的核心类 …...

compile error ESP32cam.h no such file or directory
解决方法 可以参考这篇文章: But first, you will need to download the esp32cam.h library. For this go to Github and download the esp32cam Zip. GitHub - yoursunny/esp32cam: OV2640 camera on ESP32-CAM, Arduino library 具体就是下面的这篇重要的文章 …...

使用 Chainlit, Langchain 及 Elasticsearch 轻松实现对 PDF 文件的查询
在我之前的文章 “Elasticsearch:与多个 PDF 聊天 | LangChain Python 应用教程(免费 LLMs 和嵌入)” 里,我详述如何使用 Streamlit,Langchain, Elasticsearch 及 OpenAI 来针对 PDF 进行聊天。在今天的文章中…...

Gitee的使用教程(简单详细)
1.安装git(我的电脑自带git,我没弄这步QAQ) Git (git-scm.com)https://git-scm.com/ 安装好后在桌面点击鼠标右键会出现git GUI 和 git Bash(没有的话点击显示更多选项) 2.去gitee上注册一个账号 工作台 - Gitee.co…...

生成树(习题)
模板】最小生成树 生成树有两种方法,但是我只会克鲁斯卡尔算法,所以接下来下面的的题目都是按照这个算法来实现的,首先来见一下生么是这个算法,在之前的我写的一篇博客中有题使叫修复公路,其实这一题就是使用了这个算…...

ARMv8-AArch64 的异常处理模型详解之异常处理概述Handling exceptions
异常处理模型详解之异常处理概述 一,异常处理相关概念二,异常处理概述 一,异常处理相关概念 在介绍异常处理之前,有必要了解一些关于异常处理状态的术语: 当处理器响应一个异常时,我们称该异常被获取了&a…...
Ubuntu 18.04上安装cuDNN 8.9.6.50:一站式指南
Content 一、前言二、准备工作三、安装步骤1. 启用本地仓库2. 导入CUDA GPG密钥3. 更新仓库元数据4. 安装运行时库5. 安装开发者库6. 安装代码示例7. 另外一种安装办法 四、验证安装1. 验证cuDNN版本2. 测试示例代码 五、总结 一、前言 在深度学习领域,高效的计算资…...

Microsoft Word 超链接
Microsoft Word 超链接 1. 取消超链接2. 自动超链接2.1. 选项2.2. 校对 -> 自动更正选项2.3. Internet 及网络路径替换为超链接 References 1. 取消超链接 Ctrl A -> Ctrl Shift F9 2. 自动超链接 2.1. 选项 2.2. 校对 -> 自动更正选项 2.3. Internet…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
CSS设置元素的宽度根据其内容自动调整
width: fit-content 是 CSS 中的一个属性值,用于设置元素的宽度根据其内容自动调整,确保宽度刚好容纳内容而不会超出。 效果对比 默认情况(width: auto): 块级元素(如 <div>)会占满父容器…...

嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...