Windows11(非WSL)安装Installing llama-cpp-python with GPU Support
直接安装,只支持CPU。想支持GPU,麻烦一些。
1. 安装CUDA Toolkit (NVIDIA CUDA Toolkit (available at https://developer.nvidia.com/cuda-downloads)
2. 安装如下物件:
- git
- python
- cmake
- Visual Studio Community (make sure you install this with the following settings)
- Desktop development with C++
- development
- Linux embedded development with C++
3. Clone git repository recursively to get llama.cpp submodule as well
git clone --recursive -j8 https://github.com/abetlen/llama-cpp-python.git
4. Open up a command Prompt and set the following environment variables.
set FORCE_CMAKE=1
set CMAKE_ARGS=-DLLAMA_CUBLAS=ON
5. 复制文件从Cuda到VS:**
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.3\extras\visual_studio_integration\MSBuildExtensions下面有四个文件,全部copy。

然后复制到:
C:\Program Files\Microsoft Visual Studio\2022\Community\MSBuild\Microsoft\VC\v170\BuildCustomizations下面。
6. Compiling and installing
cd\llama-cpp-python
python -m pip install -e .
7. 检查成果:
>>> from llama_cpp import Llama
>>> llm = Llama(model_path="llama-2-7b-chat.Q8_0.gguf",n_gpu_layers=-1)
结果:
ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 CUDA devices:Device 0: NVIDIA GeForce RTX 4090, compute capability 6.1, VMM: yes
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from llama-2-7b-chat.Q8_0.gguf (version GGUF V2)
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = LLaMA v2
llama_model_loader: - kv 2: llama.context_length u32 = 4096
llama_model_loader: - kv 3: llama.embedding_length u32 = 4096
llama_model_loader: - kv 4: llama.block_count u32 = 32
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 11008
llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 7: llama.attention.head_count u32 = 32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 32
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 10: general.file_type u32 = 7
llama_model_loader: - kv 11: tokenizer.ggml.model str = llama
llama_model_loader: - kv 12: tokenizer.ggml.tokens arr[str,32000] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 13: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 17: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 18: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q8_0: 226 tensors
llm_load_vocab: special tokens definition check successful ( 259/32000 ).
llm_load_print_meta: format = GGUF V2
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 4096
llm_load_print_meta: n_embd_v_gqa = 4096
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 11008
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 4096
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = Q8_0
llm_load_print_meta: model params = 6.74 B
llm_load_print_meta: model size = 6.67 GiB (8.50 BPW)
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
显卡终于在列,可以玩儿了。

相关文章:
Windows11(非WSL)安装Installing llama-cpp-python with GPU Support
直接安装,只支持CPU。想支持GPU,麻烦一些。 1. 安装CUDA Toolkit (NVIDIA CUDA Toolkit (available at https://developer.nvidia.com/cuda-downloads) 2. 安装如下物件: gitpythoncmakeVisual Studio Community (make sure you install t…...
rtt设备io框架面向对象学习-脉冲编码器设备
目录 1.脉冲编码器设备基类2.脉冲编码器设备基类的子类3.初始化/构造流程3.1设备驱动层3.2 设备驱动框架层3.3 设备io管理层 4.总结5.使用 1.脉冲编码器设备基类 此层处于设备驱动框架层。也是抽象类。 在/ components / drivers / include / drivers 下的pulse_encoder.h定义…...
华为OD机试真题- 攀登者2-2024年OD统一考试(C卷)
题目描述: 攀登者喜欢寻找各种地图,并且尝试攀登到最高的山峰。地图表示为一维数组,数组的索引代表水平位置,数组的高度代表相对海拔高度。其中数组元素0代表地面。例如[0,1,4,3,1,0,0,1,2,3,1,2,1,0], 代表如下图所示的地图,地图中有两个山脉位置分别为 1,2,3,4,5和8,9,1…...
19.Qt 组合框的实现和应用
目录 前言: 技能: 内容: 1. 界面 2.槽 3.样式表 参考: 前言: 学习QCombox控件的使用 技能: 简单实现组合框效果 内容: 1. 界面 在ui编辑界面找到input widget里面的comboBoxÿ…...
【Linux】进程地址空间的理解
进程地址空间的理解 一,什么是程序地址空间二,页表和虚拟地址空间三,为什么要有进程地址空间 一,什么是程序地址空间 在我们写程序时,都会有这样下面的内存结构,来存放变量和代码等数据。 一个进程要执行…...
【Jvm】类加载机制(Class Loading Mechanism)原理及应用场景
文章目录 Jvm基本组成一.什么是JVM类的加载二.类的生命周期阶段1:加载阶段2:验证阶段3:准备阶段4:解析阶段5:初始化 三.类初始化时机四.类加载器1.引导类加载器(Bootstrap Class Loader)2.拓展类…...
Spring AOP的实现方式
AOP基本概念 Spring框架的两大核心:IoC和AOP AOP:Aspect Oriented Programming(面向切面编程) AOP是一种思想,是对某一类事情的集中处理 面向切面编程:切面就是指某一类特定的问题,所以AOP可…...
Linux------环境变量
目录 前言 一、环境变量 二、添加PATH环境变量 三、HOME环境变量 四、查看所有环境变量 1.指令获取 2.代码获取 2.1 getenv 2.2main函数的第三个参数 2.3 全局变量environ 五、环境变量存放地点 六、添加自命名环境变量 七、系统环境变量具有全局属性 八、环境变…...
计算机视觉所需要的数学基础
计算机视觉领域中使用的数学知识广泛而深入,以下是一些关键知识点及其在计算机视觉中的应用: 线性代数: - 矩阵运算:用于图像的表示和处理,如图像旋转、缩放、裁剪等。 - 向量空间:用于描述图像中的…...
ChatGPT魔法1: 背后的原理
1. AI的三个阶段 1) 上世纪50~60年代,计算机刚刚产生 2) Machine learning 3) Deep learning, 有神经网络, 最有代表性的是ChatGPT, GPT(Generative Pre-Trained Transformer) 2. 深度神经网络 llya Suts…...
【c/c++】获取时间
在一些应用的编写中我们有时候需要用到时间,或者需要一个“锚点”来确定一些数的值。在c/c中有两个用来确定时间的函数:time/gettimeofday 一、time time_t time(time_t *timer);time 函数返回当前时间的时间戳(自 1970 年 1 月 1 日以来经…...
uniapp富文本文字长按选中(用于复制,兼容H5、APP、小程序三端)
方案:使用u-parse的selectable属性 <u-parse :selectable"true" :html"content"></u-parse> 注意:u-parse直接使用是不兼容小程序的,需要对u-parse进行改造: 1. 查看u-parse源码发现小程序走到以…...
常见的几种Web安全问题测试简介
Web项目比较常见的安全问题 1.XSS(CrossSite Script)跨站脚本攻击 XSS(CrossSite Script)跨站脚本攻击。它指的是恶意攻击者往Web 页面里插入恶意html代码,当用户浏览该页之时,嵌入其中Web 里面的html 代码会被执行,从而达到恶意用户的特殊…...
linux信号机制[一]
目录 信号量 时序问题 原子性 什么是信号 信号如何产生 引入 信号的处理方法 常见信号 如何理解组合键变成信号呢? 如何理解信号被进程保存以及信号发送的本质? 为什么要有信号 信号怎么用? 样例代码 core文件有什么用呢&#…...
elementui 中el-date-picker 选择年后输出的是Wed Jan 01 2025 00:00:00 GMT+0800 (中国标准时间)
文章目录 问题分析 问题 在使用 el-date-picker 做只选择年份的控制器时,出现如下问题:el-date-picker选择年后输出的是Wed Jan 01 2025 00:00:00 GMT0800 (中国标准时间),输出了两次如下 分析 在 el-date-picker 中,我们使用…...
Redis 集群(Cluster)
集群概念 Redis 的哨兵模式,提高了系统的可用性,但是正在用来存储数据的还是 master 和 slave 节点,所有的数据都需要存储在单个 master 和 salve 节点中。 如果数据量很大,接近超出了 master / slave 所在机器的物理内存&#…...
260.【华为OD机试真题】信道分配(贪心算法-JavaPythonC++JS实现)
🚀点击这里可直接跳转到本专栏,可查阅顶置最新的华为OD机试宝典~ 本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握! 文章目录 一. 题目-信道分配二.解题思路三.题解代码Python题解代码…...
Python打发无聊时光:3.实现简单电路的仿真
看到这个标题肯定有人会问:好好的multisim、 proteus之类的专门电路仿真软件不用,非要写一个简陋的python程序来弄,是不是精神失常了。实际上,我也不知道为什么要这么干,前两篇文章是我实际项目中的一些探索࿰…...
MyBatis-Plus:通用分页实体封装
分页查询实体:PageQuery package com.example.demo.demos.model.query;import com.baomidou.mybatisplus.core.metadata.OrderItem; import com.baomidou.mybatisplus.extension.plugins.pagination.Page; import lombok.Data; import org.springframework.util.St…...
MVC 、DDD(domain-driven design,软件主动学习业务)、中台、Java SPI(Service Provider Interface)
文章目录 引言I 单体架构DDD实现版本1.1 核心概念1.2 DDD四层架构规范1.3 案例1.4 请求转发流程II 领域服务调用2.1 菱形对称架构2.2 中台III Java SPI3.1 概念3.2 实现原理3.3 例子:本地SPI找服务see alsojava -cp<...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !
我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
Ubuntu系统多网卡多相机IP设置方法
目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机,交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息,系统版本:Ubuntu22.04.5 LTS;内核版本…...
