当前位置: 首页 > news >正文

AI模型训练的初步整理

明天会有人来给我们讲AI方面的课,我也一直想整理一下这方面的知识,今天也趁着这个机会做一下功课,算是预习。

首先,AI的模型训练可以分为:
增量学习(Incremental Learning)
增量学习允许模型在新数据到来时进行更新,而不需要重新训练整个模型。这种方法适用于那些需要持续适应新数据的场景。然而,并不是所有的机器学习模型都支持增量学习。一些模型,如支持向量机(SVM)和决策树,可以通过特定的策略实现增量更新,但其他模型,尤其是深度学习模型,通常较难直接进行增量更新。

在线学习(Online Learning)
在线学习是一种特殊的增量学习方法,它允许模型在接收新数据时实时更新。在线学习算法能够处理数据流,并在每个时间步根据新接收的数据调整模型参数。这种方法适用于数据持续生成且需要实时响应的应用。

模型微调(Fine-tuning)
在深度学习中,模型微调是一种常用的技术,它涉及在预训练模型的基础上使用新数据进行训练。通常,你会冻结预训练模型的大部分层,并只更新顶层或特定层的权重。这种方法允许模型保留在大量数据上学到的通用特征,同时学习新数据集中的特定特征。

重训练(Retraining)
如果模型不支持增量学习或在线学习,你可能需要使用新数据和原始数据重新训练整个模型。这通常是最直接的方法,但也可能非常耗时,尤其是在数据集很大或模型很复杂的情况下。

迁移学习(Transfer Learning)
迁移学习类似于模型微调,但更侧重于将从一个任务学到的知识迁移到另一个相关任务上。这通常涉及使用在大规模数据集上预训练的模型,并在特定任务的小数据集上进行微调。

AI模型训练大致包含一下几步:
数据的收集
这一块不用说,肯定是要用到网络爬虫技术。
数据的清洗与整理
Pandas用于数据的清洗与整理,下面是一个以新闻为例的整理好的数据样本。

新闻ID分类标签预处理后的新闻内容
1体育足球世界杯决赛将在本周末举行,两支强队将争夺冠军。
2政治国家领导人会见了来访的外国元首,双方就贸易问题进行了深入讨论。
3娱乐著名歌手发布了新专辑,其中的主打歌曲已经在各大音乐平台上线。

特征提取
特征向量是机器学习可以理解和使用的数值。
下面是一个简单的特征向量的例子:
新闻1特征向量: [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
不同的模型训练,对向量数据的格式要求不同。
模型训练
常用的库就是PyTorch
评估和优化
相关的知识点包括:

  • 准确率
  • 召回率
  • F1分数
  • 混淆矩阵

回到我之前博客中提到的笔记系统,我打算使用增量学习的模型,构建自己的知识库。当笔记数据更新时,会有队列任务去提取笔记数据,对笔记数据进行清洗,然后提取特征,生成向量数据,然后再进行模型训练…哈哈,梦醒了。

欢迎大家留言区交流。还望路过的大佬多多指教。

2024.2.23
重庆.渝北

相关文章:

AI模型训练的初步整理

明天会有人来给我们讲AI方面的课,我也一直想整理一下这方面的知识,今天也趁着这个机会做一下功课,算是预习。 首先,AI的模型训练可以分为: 增量学习(Incremental Learning) 增量学习允许模型在…...

【Java从入门到精通】Java Number Math 类

Java Number & Math 类 一般地,当需要使用数字的时候,我们通常使用内置数据类型,如:byte、int、long、double 等。 实例 int a 5000; float b 13.65f; byte c 0x4a; 然而,在实际开发过程中,我们…...

SQL字符集

目标:了解字符集的概念,掌握MySQL数据库存储数据的字符集逻辑以及设置方式 字符集概念 MySQL字符集关系 解决乱码问题 字符集设置原理 1、字符集概念 目标:了解字符集概念,掌握字符集存储和读取的实现原理 概念 字符集:charset或者character set&am…...

openssl 生成nginx自签名的证书

1、命令介绍 openssl req命令主要的功能有,生成证书请求文件, 查看验证证书请求文件,还有就是生成自签名证书。 主要参数 主要命令选项: -new :说明生成证书请求文件 -x509 :说明生成自签名证书 -key :指定已…...

adb push 使用

adb push命令用于将文件从本地计算机推送到Android设备。要使用adb push命令,需要先连接Android设备并启动ADB调试模式。以下是使用adb push命令的基本步骤: 打开终端(命令提示符)。 使用cd命令导航到存储要推送文件的文件夹。 …...

【Docker】构建pytest-playwright镜像并验证

Dockerfile FROM ubuntu LABEL maintainer "langhuang521l63.com" ENV TZAsia/Shanghai #设置时区 #安装python3依赖与下载安装包 RUN ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo $TZ > /etc/timezone \&& apt update \&&…...

算法沉淀——穷举、暴搜、深搜、回溯、剪枝综合练习四(leetcode真题剖析)

算法沉淀——穷举、暴搜、深搜、回溯、剪枝综合练习四 01.解数独02.单词搜索03.黄金矿工04.不同路径 III 01.解数独 题目链接:https://leetcode.cn/problems/sudoku-solver/ 编写一个程序,通过填充空格来解决数独问题。 数独的解法需 遵循如下规则&am…...

如何在java中使用 Excel 动态函数生成依赖列表

前言 在Excel 中,依赖列表或级联下拉列表表示两个或多个列表,其中一个列表的项根据另一个列表而变化。依赖列表通常用于Excel的业务报告,例如学术记分卡中的【班级-学生】列表、区域销售报告中的【区域-国家/地区】列表、人口仪表板中的【年…...

07 MyBatis之高级映射 + 懒加载(延迟加载)+缓存

1. 高级映射 例如有两张表, 分别为班级表和学生表 自然, 一个班级对应多个学生 像这种数据 , 应该如果如何映射到Java的实体类上呢? 这就是高级映射解决的问题 以班级和学生为例子 , 因为一个班级对应多个学生 , 因此学生表中必定有一个班级编号字段cid 但我们在学生的实体…...

MT8791迅鲲900T联发科5G安卓核心板规格参数_MTK平台方案定制

MT8791安卓核心板是一款搭载了旗舰级配置的中端手机芯片。该核心板采用了八核CPU架构设计,但是升级了旗舰级的Arm Cortex-A78核心,两个大核主频最高可达2.4GHz。配备了Arm Mali-G68 GPU,通过Mali-G88的先进技术,图形处理性能大幅提…...

java:Java中的数组详解

目录 Java数组的定义和特点: Java数组的初始化和赋值 Java数组的常用操作 1. 遍历数组 2. 获取数组长度 3. 访问数组元素 4. 数组的拷贝 多维数组 数组的排序和查找 冒泡排序: 快速排序 : 二分查找: 数组的应用: Java数…...

Modern C++ std::visit从实践到原理

前言 std::visit 是 C17 中引入的一个模板函数,它用于对给定的 variant、union 类型或任何其他兼容的类型执行一个访问者操作。这个函数为多种可能类型的值提供了一种统一的访问机制。使用 std::visit,你可以编写更通用和灵活的代码,而无需关…...

谷歌gemma2b windows本地cpu gpu部署,pytorch框架,模型文件百度网盘下载

简介 谷歌DeepMind发布了Gemma,这是一系列灵感来自用于Gemini相同研究和技术的开放模型。开放模型适用于各种用例,这是谷歌非常明智的举措。有2B(在2T tokens上训练)和7B(在6T tokens上训练)模型,包括基础和指令调整版本。在8192个token的上下文长度上进行训练。允许商业使…...

数据结构-查找与排序

数据结构再往后就是比较零散的各种操作&#xff0c;查找与排序是其中最常出现的&#xff0c;今天来总结一下常用的查找与排序所用的方法 查找 顺序查找 最简单的查找方式&#xff0c;遍历&#xff0c;然后比较 bool search1(int *a,int n,int k){for (int i1;i<n;i){//遍…...

【前端素材】推荐优质后台管理系统Qovex平台模板(附源码)

一、需求分析 1、定义 后台管理系统是一种用于管理和监控网站、应用程序或系统的在线工具。它通常是通过网页界面进行访问和操作&#xff0c;用于管理网站内容、用户权限、数据分析等。后台管理系统是网站或应用程序的控制中心&#xff0c;管理员可以通过后台系统进行各种管理…...

MATLAB环境下基于短时傅里叶变换和Rényi熵的脑电信号和语音信号分析

傅里叶变换是不能很好的反映信号在时域的某一个局部范围的频谱特点的&#xff0c;这一点很可惜。因为在许多实际工程中&#xff0c;人们对信号在局部区域的特征是比较关心的&#xff0c;这些特征包含着十分有用的信息。这类信号因为在时域(或者是空间域)上具有突变的非稳定性和…...

Go语言调用身份证实名认证API方法-标准版身份证实名认证接口

翔云身份证实名认证接口具备高准确度的身份信息比对能力&#xff0c;包括姓名、身份证号码、人脸照片等信息的一致性验证&#xff0c;并能实时反馈验证结果。 以下是GO语言调用翔云身份实名认证API的代码&#xff1a; package mainimport ("fmt""bytes"&q…...

数据库增删改查

DDL: 数据定义语言&#xff0c;用来定义数据库对象&#xff08;数据库、表、字段&#xff09;DML: 数据操作语言&#xff0c;用来对数据库表中的数据进行增删改DQL: 数据查询语言&#xff0c;用来查询数据库中表的记录DCL: 数据控制语言&#xff0c;用来创建数据库用户、控制数…...

10.CSS3的calc函数

CSS3 的 calc 函数 经典真题 CSS 的计算属性知道吗&#xff1f; CSS3 中的 calc 函数 calc 是英文单词 calculate&#xff08;计算&#xff09;的缩写&#xff0c;是 CSS3 的一个新增的功能。 MDN 的解释为可以用在任何长度、数值、时间、角度、频率等处&#xff0c;语法如…...

echrts 全国地图、各省市地图json文件下载

DataV.GeoAtlas地理小工具系列...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...