当前位置: 首页 > news >正文

830. 单调栈

Problem: 830. 单调栈

文章目录

  • 思路
  • 解题方法
  • 复杂度
  • Code

思路

这是一个单调栈的问题。单调栈是一种特殊的栈结构,它的特点是栈中的元素保持单调性。在这个问题中,我们需要找到每个元素左边第一个比它小的元素,这就需要使用到单调递增栈。

我们从左到右遍历数组,对于每个元素,如果栈为空或者当前元素大于栈顶元素,就将当前元素入栈;否则,就将栈顶元素出栈,直到栈为空或者找到一个栈顶元素小于当前元素,然后将当前元素入栈。这样,栈中的元素就始终保持了单调递增的性质。

在这个过程中,每当我们要将一个元素出栈时,就找到了这个元素左边第一个比它小的元素(就是当前的栈顶元素)。我们可以在这个时候记录下这个信息。

解题方法

我们使用一个栈和一个二维数组。栈用来存储元素的索引,二维数组用来存储每个元素左边第一个比它小的元素的索引和右边第一个比它小的元素的索引。

在遍历数组的过程中,我们使用一个指针r来表示栈顶。每当我们要将一个元素i入栈时,如果栈不为空并且栈顶元素大于等于当前元素,就将栈顶元素出栈,并记录下这个元素左边第一个比它小的元素的索引(就是当前的栈顶元素)和右边第一个比它小的元素的索引(就是当前的元素i)。然后将元素i入栈。

在遍历完数组后,栈中可能还有元素。这些元素右边没有比它小的元素,所以我们将这些元素出栈,并记录下这个元素左边第一个比它小的元素的索引(就是当前的栈顶元素)。

最后,我们需要修正一下结果。因为可能存在连续的相同的元素,这些元素右边第一个比它小的元素应该是相同的。所以我们从右到左遍历数组,如果一个元素和它右边的元素相同,就将它的右边第一个比它小的元素的索引更新为它右边的元素的右边第一个比它小的元素的索引。

复杂度

时间复杂度:

O ( n ) O(n) O(n),我们只遍历了一次数组。

空间复杂度:

O ( n ) O(n) O(n),我们使用了一个栈和一个二维数组来存储信息。

Code

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;public class Main {static BufferedReader in = new BufferedReader(new InputStreamReader(System.in));static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));static StreamTokenizer sr = new StreamTokenizer(in);static int MAXN = (int) (1e5 + 10);static int n, r;static int[] arr = new int[MAXN];static int[][] ans = new int[MAXN][2];static int[] stack = new int[MAXN];public static void main(String[] args) throws IOException {n = nextInt();for (int i = 0; i < n; i++) {arr[i] = nextInt();}// 找出左边第一个比自己小的元素deal();for (int i = 0; i < n; i++) {if (ans[i][0] != -1) {out.print(arr[ans[i][0]] + " ");} else {out.print(-1 + " ");}}out.flush();}private static void deal() {// TODO Auto-generated method stubint cur;r = 0;// 计算阶段for (int i = 0; i < n; i++) {while (r > 0 && arr[stack[r - 1]] >= arr[i]) {cur = stack[--r];ans[cur][0] = r > 0 ? stack[r - 1] : -1;ans[cur][1] = i;}stack[r++] = i;}// 清算阶段while (r > 0) {cur = stack[--r];ans[cur][0] = r > 0 ? stack[r - 1] : -1;ans[cur][1] = -1;}// 修正阶段for (int i = n - 2; i >= 0; i--) {if (ans[i][1] != -1 && arr[ans[i][1]] == arr[i]) {ans[i][1] = ans[ans[i][1]][1];}}}static int nextInt() throws IOException {sr.nextToken();return (int) sr.nval;}}

相关文章:

830. 单调栈

Problem: 830. 单调栈 文章目录 思路解题方法复杂度Code 思路 这是一个单调栈的问题。单调栈是一种特殊的栈结构&#xff0c;它的特点是栈中的元素保持单调性。在这个问题中&#xff0c;我们需要找到每个元素左边第一个比它小的元素&#xff0c;这就需要使用到单调递增栈。 我们…...

H5 个人引导页官网型源码

H5 个人引导页官网型源码 源码介绍&#xff1a;源码无后台、无数据库&#xff0c;H5自检测适应、无加密&#xff0c;直接修改可用。 源码含有多选项&#xff0c;多功能。可展示自己站点、团队站点。手机电脑双端。 下载地址&#xff1a; https://www.changyouzuhao.cn/1434.…...

【Linux】部署前后端分离项目---(Nginx自启,负载均衡)

目录 前言 一 Nginx&#xff08;自启动&#xff09; 2.1 Nginx的安装 2.2 设置自启动Nginx 二 Nginx负载均衡tomcat 2.1 准备两个tomcat 2.1.1 复制tomcat 2.1.2 修改server.xml文件 2.1.3 开放端口 2.2 Nginx配置 2.2.1 修改nginx.conf文件 2.2.2 重启Nginx服务 2…...

WPF Style样式设置

1.本window设置样式 <Window x:Class"WPF_Study.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expressi…...

【STM32】软件SPI读写W25Q64芯片

目录 W25Q64模块 W25Q64芯片简介 硬件电路 W25Q64框图 Flash操作注意事项 状态寄存器 ​编辑 指令集 INSTRUCTIONS​编辑 ​编辑 SPI读写W25Q64代码 硬件接线图 MySPI.c MySPI.h W25Q64 W25Q64.c W25Q64.h W25Q64_Ins.h main.c 测试 SPI通信&#xff08;W25…...

普通中小学校管理信息系统V1.1

普通中小学校管理信息系统 Ordinary Primary and Secondary Schools Management Information System 普通中小学校管理信息系统 Ordinary Primary and Secondary Schools Management Information System...

中国水果采摘机器人行业市场研究及发展趋势分析报告

全版价格&#xff1a;壹捌零零 报告版本&#xff1a;下单后会更新至最新版本 交货时间&#xff1a;1-2天 第一章 2016-2026年中国水果采摘机器人行业总概 1.1 中国水果采摘机器人行业发展概述 机器人技术的发展是一个国家高科技水平和工业自动化程度的重要标志和体现。机器…...

Linux多进程与信号

在多进程的服务程序中&#xff0c;如果子进程收到退出信号&#xff0c;子进程自行退出。如果父进程收到退出信号&#xff0c;应该先向全部的子进程发送退出信号&#xff0c;然后自己再退出。 演示demo程序 #include <iostream> // 包含输入输出流库&#xff0c;用于输…...

Self-attention与Word2Vec

Self-attention&#xff08;自注意力&#xff09;和 Word2Vec 是两种不同的词嵌入技术&#xff0c;用于将单词映射到低维向量空间。它们之间的区别&#xff1a; Word2Vec&#xff1a; Word2Vec 是一种传统的词嵌入&#xff08;word embedding&#xff09;方法&#xff0c;旨在为…...

【Flutter/Android】运行到安卓手机上一直卡在 Running Gradle task ‘assembleDebug‘... 的终极解决办法

方法步骤简要 查看你的Flutter项目需要什么版本的 Gradle 插件&#xff1a; 下载这个插件&#xff1a; 方法一&#xff1a;浏览器输入&#xff1a;https://services.gradle.org/distributions/gradle-7.6.3-all.zip 方法二&#xff1a;去Gradle官网找对应的版本&#xff1a;h…...

医疗实施-客户需求分析

在我的日常系统实施过程中&#xff0c;总会遇到不同角色的客户提出不同类别的需求。有的需求&#xff0c;客户目的想提高操作便携&#xff0c;但会对系统稳定性存在风险&#xff0c;应该拒掉。有些需求紧急而且影响重大&#xff0c;应该紧急处理。有些需求可以做&#xff0c;但…...

调度服务看门狗配置

查看当前服务器相关的sqlserver服务 在任务栏右键&#xff0c;选择点击启动任务管理器 依次点击&#xff0c;打开服务 找到sqlserver 相关的服务&#xff0c; 确认这些服务是启动状态 将相关服务在看门狗中进行配置 选择调度服务&#xff0c;双击打开 根据上面找的服务进行勾…...

AI时代 编程高手的秘密武器:世界顶级大学推荐的计算机教材

文章目录 01 《深入理解计算机系统》02 《算法导论》03 《计算机程序的构造和解释》04 《数据库系统概念》05 《计算机组成与设计&#xff1a;硬件/软件接口》06 《离散数学及其应用》07 《组合数学》08《斯坦福算法博弈论二十讲》 清华、北大、MIT、CMU、斯坦福的学霸们在新学…...

【数据结构和算法初阶(c语言)】数据结构前言,初识数据结构(给你一个选择学习数据结构和算法的理由)

1.何为数据结构 数据结构(Data Structure)是计算机存储、组织数据的方式&#xff0c;指相互之间存在一种或多种特定关系的 数据元素的集合。本质来讲就是在内存中去管理数据方式比如我们的增删查改。在内存中管理数据的方式有很多种&#xff08;比如数组结构、链式结构、树型结…...

LeetCode 0235.二叉搜索树的最近公共祖先:用搜索树性质(不遍历全部节点)

【LetMeFly】235.二叉搜索树的最近公共祖先&#xff1a;用搜索树性质&#xff08;不遍历全部节点&#xff09; 力扣题目链接&#xff1a;https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-search-tree/ 给定一个二叉搜索树, 找到该树中两个指定节点的最近公…...

【Prometheus】概念和工作原理介绍

目录 一、概述 1.1 prometheus简介 1.2 prometheus特点 1.3 prometheus架构图 1.4 prometheus组件介绍 1、Prometheus Server 2、Client Library 3、pushgateway 4、Exporters 5、Service Discovery 6、Alertmanager 7、grafana 1.5 Prometheus 数据流向 1.6 Pro…...

四川易点慧电子商务有限公司抖音小店:可靠之选,购物新体验

在当今这个网络购物日益盛行的时代&#xff0c;选择一家可靠的电商平台成为了消费者最为关心的问题之一。四川易点慧电子商务有限公司抖音小店作为新兴的电商力量&#xff0c;凭借其独特的魅力和优势&#xff0c;正逐渐成为众多消费者心中的可靠之选。 易点慧电子商务有限公司在…...

SpringBoot自带的tomcat的最大连接数和最大的并发数

先说结果&#xff1a;springboot自带的tomcat的最大并发数是200&#xff0c; 最大连接数是&#xff1a;max-connectionsaccept-count的值 再说一下和连接数相关的几个配置&#xff1a; 以下都是默认值&#xff1a; server.tomcat.threads.min-spare10 server.tomcat.threa…...

TLS1.2抓包解析

1.TLS1.2记录层消息解析 Transport Layer SecurityTLSv1.2 Record Layer: Handshake Protocol: Client HelloContent Type: Handshake (22)Version: TLS 1.0 (0x0301)Length: 253Content Type&#xff1a;消息类型&#xff0c;1个字节。 i 0Version&#xff1a;协议版本&…...

使用两个队列实现栈

在计算机科学中&#xff0c;栈是一种数据结构&#xff0c;它遵循后进先出&#xff08;LIFO&#xff09;的原则。这意味着最后一个被添加到栈的元素将是第一个被移除的元素。然而&#xff0c;Java的标准库并没有提供栈的实现&#xff0c;但我们可以使用两个队列来模拟一个栈的行…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI

前一阵子在百度 AI 开发者大会上&#xff0c;看到基于小智 AI DIY 玩具的演示&#xff0c;感觉有点意思&#xff0c;想着自己也来试试。 如果只是想烧录现成的固件&#xff0c;乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外&#xff0c;还提供了基于网页版的 ESP LA…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重&#xff0c;适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解&#xff0c;并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...

Python环境安装与虚拟环境配置详解

本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南&#xff0c;适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者&#xff0c;都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...

HTML中各种标签的作用

一、HTML文件主要标签结构及说明 1. <&#xff01;DOCTYPE html> 作用&#xff1a;声明文档类型&#xff0c;告知浏览器这是 HTML5 文档。 必须&#xff1a;是。 2. <html lang“zh”>. </html> 作用&#xff1a;包裹整个网页内容&#xff0c;lang"z…...

持续交付的进化:从DevOps到AI驱动的IT新动能

文章目录 一、持续交付的本质&#xff1a;从手动到自动的交付飞跃关键特性案例&#xff1a;电商平台的高效部署 二、持续交付的演进&#xff1a;从CI到AI驱动的未来发展历程 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/101f72defaf3493ba0ba376bf09367a2.png)中国…...