当前位置: 首页 > news >正文

高数考研 -- 公式总结(更新中)

1. 两个重要极限

(1) lim ⁡ x → 0 sin ⁡ x x = 1 \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 limx0xsinx=1, 推广形式 lim ⁡ f ( x ) → 0 sin ⁡ f ( x ) f ( x ) = 1 \lim _{f(x) \rightarrow 0} \frac{\sin f(x)}{f(x)}=1 limf(x)0f(x)sinf(x)=1.
(2) lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^x=\mathrm{e} limx(1+x1)x=e, 推广形式 lim ⁡ x → 0 ( 1 + x ) 1 x = e , lim ⁡ f ( x ) → ∞ [ 1 + 1 f ( x ) ] f ( x ) = e \lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\mathrm{e}, \lim _{f(x) \rightarrow \infty}\left[1+\frac{1}{f(x)}\right]^{f(x)}=\mathrm{e} limx0(1+x)x1=e,limf(x)[1+f(x)1]f(x)=e

2. 常用的等价无穷小量及极限公式

(1) 当 x → 0 x \rightarrow 0 x0 时,常用的等价无穷小

  • (1) x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ ln ⁡ ( 1 + x ) ∼ e x − 1 x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim \ln (1+x) \sim \mathrm{e}^x-1 xsinxtanxarcsinxarctanxln(1+x)ex1.
  • (2) 1 − cos ⁡ x ∼ 1 2 x 2 , 1 − cos ⁡ b x ∼ b 2 x 2 ( b ≠ 0 ) 1-\cos x \sim \frac{1}{2} x^2, 1-\cos ^b x \sim \frac{b}{2} x^2(b \neq 0) 1cosx21x2,1cosbx2bx2(b=0).
  • (3) a x − 1 ∼ x ln ⁡ a ( a > 0 a^x-1 \sim x \ln a(a>0 ax1xlna(a>0, 且 a ≠ 1 ) a \neq 1) a=1).
  • (4) ( 1 + x ) α − 1 ∼ α x ( α ≠ 0 ) (1+x)^\alpha-1 \sim \alpha x (\alpha \neq 0) (1+x)α1αx(α=0).

(2) 当 n → ∞ n \rightarrow \infty n x → ∞ x \rightarrow \infty x 时,常用的极限公式

  • (1) lim ⁡ n → ∞ n n = 1 , lim ⁡ n → ∞ a n = 1 ( a > 0 ) \lim _{n \rightarrow \infty} \sqrt[n]{n}=1, \lim _{n \rightarrow \infty} \sqrt[n]{a}=1(a>0) limnnn =1,limnna =1(a>0).
  • (2) lim ⁡ x → ∞ a n x n + a n − 1 x n − 1 + ⋯ + a 1 x + a 0 b m x m + b m − 1 x m − 1 + ⋯ + b 1 x + b 0 = { a n b m , n = m , 0 , n < m , ∞ , n > m , \lim _{x \rightarrow \infty} \frac{a_n x^n+a_{n-1} x^{n-1}+\cdots+a_1 x+a_0}{b_m x^m+b_{m-1} x^{m-1}+\cdots+b_1 x+b_0}=\left\{\begin{array}{ll}\frac{a_n}{b_m}, & n=m, \\ 0, & n<m, \\ \infty, & n>m,\end{array}\right. limxbmxm+bm1xm1++b1x+b0anxn+an1xn1++a1x+a0= bman,0,,n=m,n<m,n>m, 其中 a n , b m a_n, b_m an,bm 均不

为 0 .

  • (3) lim ⁡ n → ∞ x n = { 0 , ∣ x ∣ < 1 , ∞ , ∣ x ∣ > 1 , 1 , x = 1 , 不存在,  x = − 1 ; lim ⁡ n → ∞ e n x = { 0 , x < 0 , + ∞ , x > 0 , 1 , x = 0. \lim _{n \rightarrow \infty} x^n=\left\{\begin{array}{ll}0, & |x|<1, \\ \infty, & |x|>1, \\ 1, & x=1, \\ \text { 不存在, } & x=-1 ;\end{array} \lim _{n \rightarrow \infty} \mathrm{e}^{n x}= \begin{cases}0, & x<0, \\ +\infty, & x>0, \\ 1, & x=0 .\end{cases}\right. limnxn= 0,,1, 不存在x<1,x>1,x=1,x=1;limnenx= 0,+,1,x<0,x>0,x=0.
  • (4) 若 lim ⁡ g ( x ) = 0 , lim ⁡ f ( x ) = ∞ \lim g(x)=0, \lim f(x)=\infty limg(x)=0,limf(x)=, 且 lim ⁡ g ( x ) f ( x ) = A \lim g(x) f(x)=A limg(x)f(x)=A, 则有
    lim ⁡ [ 1 + g ( x ) ] f ( x ) = e A . \lim [1+g(x)]^{f(x)}=\mathrm{e}^A . lim[1+g(x)]f(x)=eA.

3. x → 0 x \rightarrow 0 x0 时常见的麦克劳林公式

sin ⁡ x = x − 1 3 ! x 3 + o ( x 3 ) , cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 + o ( x 4 ) , tan ⁡ x = x + 1 3 x 3 + o ( x 3 ) , arcsin ⁡ x = x + 1 3 ! x 3 + o ( x 3 ) , arctan ⁡ x = x − 1 3 x 3 + o ( x 3 ) , ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + o ( x 3 ) , e x = 1 + x + 1 2 ! x 2 + 1 3 ! x 3 + o ( x 3 ) , ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + o ( x 2 ) . \begin{aligned} & \sin x=x-\frac{1}{3 !} x^3+o\left(x^3\right), \quad \cos x=1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4+o\left(x^4\right),\\ \\ & \tan x=x+\frac{1}{3} x^3+o\left(x^3\right), \quad \arcsin x=x+\frac{1}{3 !} x^3+o\left(x^3\right), \\ \\ & \arctan x=x-\frac{1}{3} x^3+o\left(x^3\right), \quad \ln (1+x)=x-\frac{1}{2} x^2+\frac{1}{3} x^3+o\left(x^3\right), \\ \\ & \mathrm{e}^x=1+x+\frac{1}{2 !} x^2+\frac{1}{3 !} x^3+o\left(x^3\right),(1+x)^a=1+a x+\frac{a(a-1)}{2 !} x^2+o\left(x^2\right) . \end{aligned} sinx=x3!1x3+o(x3),cosx=12!1x2+4!1x4+o(x4),tanx=x+31x3+o(x3),arcsinx=x+3!1x3+o(x3),arctanx=x31x3+o(x3),ln(1+x)=x21x2+31x3+o(x3),ex=1+x+2!1x2+3!1x3+o(x3),(1+x)a=1+ax+2!a(a1)x2+o(x2).

x → 0 x \rightarrow 0 x0 时,由以上公式可以得到以下几组“差函数”的等价无穷小代换式:

x − sin ⁡ x ∼ x 3 6 , tan ⁡ x − x ∼ x 3 3 , x − ln ⁡ ( 1 + x ) ∼ x 2 2 x-\sin x \sim \frac{x^3}{6}, \quad \tan x-x \sim \frac{x^3}{3}, \quad x-\ln (1+x) \sim \frac{x^2}{2} xsinx6x3,tanxx3x3,xln(1+x)2x2, arcsin ⁡ x − x ∼ x 3 6 , x − arctan ⁡ x ∼ x 3 3 \arcsin x-x \sim \frac{x^3}{6}, \quad x-\arctan x \sim \frac{x^3}{3} arcsinxx6x3,xarctanx3x3.

4. 基本导数公式

( x μ ) ′ = μ x μ − 1 ( μ 为常数 ) , ( a x ) ′ = a x ln ⁡ a ( a > 0 , a ≠ 1 ) , ( log ⁡ a x ) ′ = 1 x ln ⁡ a ( a > 0 , a ≠ 1 ) , ( ln ⁡ x ) ′ = 1 x , ( sin ⁡ x ) ′ = cos ⁡ x , ( cos ⁡ x ) ′ = − sin ⁡ x , ( arcsin ⁡ x ) ′ = 1 1 − x 2 , ( arccos ⁡ x ) ′ = − 1 1 − x 2 , ( tan ⁡ x ) ′ = sec ⁡ 2 x , ( cot ⁡ x ) ′ = − csc ⁡ 2 x , ( arctan ⁡ x ) ′ = 1 1 + x 2 , ( arccot ⁡ x ) ′ = − 1 1 + x 2 , ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x , ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x , [ ln ⁡ ( x + x 2 + 1 ) ] ′ = 1 x 2 + 1 , , [ ln ⁡ ( x + x 2 − 1 ) ] ′ = 1 x 2 − 1 \begin{array}{ll} \left(x^\mu\right)^{\prime}=\mu x^{\mu-1} ( \mu 为常数), & \left(a^x\right)^{\prime}=a^x \ln a(a>0, a \neq 1), \\ \\ \left(\log _a x\right)^{\prime}=\frac{1}{x \ln a}(a>0, a \neq 1) , & (\ln x)^{\prime}=\frac{1}{x}, \\ \\ (\sin x)^{\prime}=\cos x, & (\cos x)^{\prime}=-\sin x, \\ \\ (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^2}}, & (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^2}}, \\ \\ (\tan x)^{\prime}=\sec ^2 x, & (\cot x)^{\prime}=-\csc ^2 x, \\ \\ (\arctan x)^{\prime}=\frac{1}{1+x^2}, & (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^2}, \\ \\ (\sec x)^{\prime}=\sec x \tan x, & (\csc x)^{\prime}=-\csc x \cot x, \\ \\ {\left[\ln \left(x+\sqrt{x^2+1}\right)\right]^{\prime}=\frac{1}{\sqrt{x^2+1}},}, & {\left[\ln \left(x+\sqrt{x^2-1}\right)\right]^{\prime}=\frac{1}{\sqrt{x^2-1}}} \end{array} (xμ)=μxμ1(μ为常数),(logax)=xlna1(a>0,a=1),(sinx)=cosx,(arcsinx)=1x2 1,(tanx)=sec2x,(arctanx)=1+x21,(secx)=secxtanx,[ln(x+x2+1 )]=x2+1 1,,(ax)=axlna(a>0,a=1),(lnx)=x1,(cosx)=sinx,(arccosx)=1x2 1,(cotx)=csc2x,(arccotx)=1+x21,(cscx)=cscxcotx,[ln(x+x21 )]=x21 1
三角函数六边形记忆法:
在这里插入图片描述

注: 变限积分求导公式.
F ( x ) = ∫ φ 2 ( x ) φ 1 ( x ) f ( t ) d t F(x)=\int_{\varphi_2(x)}^{\varphi_1(x)} f(t) \mathrm{d} t F(x)=φ2(x)φ1(x)f(t)dt, 其中 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b] 上连续, 可导函数 φ 1 ( x ) \varphi_1(x) φ1(x) φ 2 ( x ) \varphi_2(x) φ2(x) 的值域在 [ a , b ] [a, b] [a,b] 上, 则在函数 φ 1 ( x ) \varphi_1(x) φ1(x) φ 2 ( x ) \varphi_2(x) φ2(x) 的公共定义域上有:
F ′ ( x ) = d d x [ ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t ] = f [ φ 2 ( x ) ] φ 2 ′ ( x ) − f [ φ 1 ( x ) ] φ 1 ′ ( x ) . F^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x}\left[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t) \mathrm{d} t\right]=f\left[\varphi_2(x)\right] \varphi_2^{\prime}(x)-f\left[\varphi_1(x)\right] \varphi_1^{\prime}(x) . F(x)=dxd[φ1(x)φ2(x)f(t)dt]=f[φ2(x)]φ2(x)f[φ1(x)]φ1(x).

5. 几个重要函数的麦克劳林展开式

(1) e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) \mathrm{e}^x=1+x+\frac{1}{2 !} x^2+\cdots+\frac{1}{n !} x^n+o\left(x^n\right) ex=1+x+2!1x2++n!1xn+o(xn).

(2) sin ⁡ x = x − 1 3 ! x 3 + ⋯ + ( − 1 ) n 1 ( 2 n + 1 ) ! x 2 n + 1 + o ( x 2 n + 1 ) \sin x=x-\frac{1}{3 !} x^3+\cdots+(-1)^n \frac{1}{(2 n+1) !} x^{2 n+1}+o\left(x^{2 n+1}\right) sinx=x3!1x3++(1)n(2n+1)!1x2n+1+o(x2n+1).

(3) cos ⁡ x = 1 − 1 2 ! x 2 + 1 4 ! x 4 − ⋯ + ( − 1 ) n 1 ( 2 n ) ! x 2 n + o ( x 2 n ) \cos x=1-\frac{1}{2 !} x^2+\frac{1}{4 !} x^4-\cdots+(-1)^n \frac{1}{(2 n) !} x^{2 n}+o\left(x^{2 n}\right) cosx=12!1x2+4!1x4+(1)n(2n)!1x2n+o(x2n).

(4) 1 1 − x = 1 + x + x 2 + ⋯ + x n + o ( x n ) , ∣ x ∣ < 1 \frac{1}{1-x}=1+x+x^2+\cdots+x^n+o\left(x^n\right),|x|<1 1x1=1+x+x2++xn+o(xn),x<1.

(5) 1 1 + x = 1 − x + x 2 − ⋯ + ( − 1 ) n x n + o ( x n ) , ∣ x ∣ < 1 \frac{1}{1+x}=1-x+x^2-\cdots+(-1)^n x^n+o\left(x^n\right),|x|<1 1+x1=1x+x2+(1)nxn+o(xn),x<1.

(6) ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) , − 1 < x ⩽ 1 \ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots+(-1)^{n-1} \frac{x^n}{n}+o\left(x^n\right),-1<x \leqslant 1 ln(1+x)=x2x2+3x3+(1)n1nxn+o(xn),1<x1.

(7) ( 1 + x ) a = 1 + a x + a ( a − 1 ) 2 ! x 2 + ⋯ + a ( a − 1 ) ⋯ ( a − n + 1 ) n ! x n + (1+x)^a=1+a x+\frac{a(a-1)}{2 !} x^2+\cdots+\frac{a(a-1) \cdots(a-n+1)}{n !} x^n+ (1+x)a=1+ax+2!a(a1)x2++n!a(a1)(an+1)xn+ o ( x n ) o\left(x^n\right) o(xn).

6. 曲率和曲率半径计算公式

(1) 曲率

  • (1) (非参数方程) 曲线 y = f ( x ) y=f(x) y=f(x) 上任意一点 ( x , f ( x ) ) (x, f(x)) (x,f(x)) 处的曲率为
    K = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 .  K=\frac{\left|y^{\prime \prime}\right|}{\left[1+\left(y^{\prime}\right)^2\right]^{\frac{3}{2}}} \text {. } K=[1+(y)2]23y′′
  • (2) (参数方程) { x = x ( t ) , y = y ( t ) \left\{\begin{array}{l}x=x(t), \\ y=y(t)\end{array}\right. {x=x(t),y=y(t) 上任意一点的曲率为
    K = ∣ x ′ ( t ) y ′ ′ ( t ) − y ′ ( t ) x ′ ′ ( t ) ∣ { [ x ′ ( t ) ] 2 + [ y ′ ( t ) ] 2 } 3 2 . K=\frac{\left|x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)\right|}{\left\{\left[x^{\prime}(t)\right]^2+\left[y^{\prime}(t)\right]^2\right\}^{\frac{3}{2}}} . K={[x(t)]2+[y(t)]2}23x(t)y′′(t)y(t)x′′(t).
    参数方程求导:
    参数方程 { x = φ ( t ) y = ψ ( t ) \left\{\begin{array}{l}x=\varphi(t) \\ y=\psi(t)\end{array}\right. {x=φ(t)y=ψ(t)

d y d x = d y / d t d x / d t = ψ ′ ( t ) φ ′ ( t ) , 令其为 F ( t ) , \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)},令其为F(t),\\ dxdy=dx/dtdy/dt=φ(t)ψ(t),令其为F(t),
d 2 y d x 2 = d ( d y d x ) d x = d ( d y d x ) / d t d x / d t = ψ ′ ′ ( t ) φ ′ ( t ) − ψ ′ ( t ) φ ′ ′ ( t ) [ φ ′ ( t ) ] 3 = d ( F ( t ) ) / d t d x / d t = F ′ ( t ) φ ′ ( t ) \frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{d y}{d x}\right)}{d x}=\frac{d\left(\frac{d y}{d x}\right) / d t}{d x / d t}=\frac{\psi^{\prime \prime}(t) \varphi^{\prime}(t)-\psi^{\prime}(t) \varphi^{\prime \prime}(t)}{\left[\varphi^{\prime}(t)\right]^{3}} = \frac{d(F(t))/dt}{dx/dt} = \frac{F^{\prime}(t)}{\varphi^{\prime}(t)} dx2d2y=dxd(dxdy)=dx/dtd(dxdy)/dt=[φ(t)]3ψ′′(t)φ(t)ψ(t)φ′′(t)=dx/dtd(F(t))/dt=φ(t)F(t)
可以记最后那个简单的式子

(2) 曲率半径
R = 1 K ( K ≠ 0 ) R=\frac{1}{K}(K \neq 0) R=K1(K=0)

相关文章:

高数考研 -- 公式总结(更新中)

1. 两个重要极限 (1) lim ⁡ x → 0 sin ⁡ x x 1 \lim _{x \rightarrow 0} \frac{\sin x}{x}1 limx→0​xsinx​1, 推广形式 lim ⁡ f ( x ) → 0 sin ⁡ f ( x ) f ( x ) 1 \lim _{f(x) \rightarrow 0} \frac{\sin f(x)}{f(x)}1 limf(x)→0​f(x)sinf(x)​1. (2) lim ⁡…...

详解顺序结构滑动窗口处理算法

&#x1f380;个人主页&#xff1a; https://zhangxiaoshu.blog.csdn.net &#x1f4e2;欢迎大家&#xff1a;关注&#x1f50d;点赞&#x1f44d;评论&#x1f4dd;收藏⭐️&#xff0c;如有错误敬请指正! &#x1f495;未来很长&#xff0c;值得我们全力奔赴更美好的生活&…...

Java 8中使用Stream来操作集合

Java 8中使用Stream来操作集合 在Java 8中&#xff0c;你可以使用Stream API来操作集合&#xff0c;这使得集合的处理变得更加简洁和函数式。Stream API提供了一系列的中间操作&#xff08;intermediate operations&#xff09;和终端操作&#xff08;terminal operations&…...

MATLAB环境下一种改进的瞬时频率(IF)估计方法

相对于频率成分单一、周期性强的平稳信号来说&#xff0c;具有非平稳、非周期、非可积特性的非平稳信号更普遍地存在于自然界中。调频信号作为非平稳信号的一种&#xff0c;由于其频率时变、距离分辨率高、截获率低等特性&#xff0c;被广泛应用于雷达、地震勘测等领域。调频信…...

解决:selenium web browser 的版本适配问题

文章目录 解决方案&#xff1a;使用 webdriver manager 自动适配驱动 使用 selenium 操控浏览器的时候报错&#xff1a; The chromedriver version (114.0.5735.90) detected in PATH at /opt/homebrew/bin/chromedriver might not be compatible with the detected chrome ve…...

pytest.param作为pytest.mark.parametrize的参数进行调用

pytest.param&#xff1a;在 pytest.mark.parametrize 中可以作为一个指定的参数进行调用 获取数据库&#xff08;网页端&#xff09;数据&#xff0c;通过pytest.param包装成数据包用于pytest.mark.parametrize 中实现数据驱动调用。 import os import pytest import json fr…...

如何判断一个元素是否在可视区域中?

文章目录 一、用途二、实现方式offsetTop、scrollTopgetBoundingClientRectIntersection Observer创建观察者传入被观察者 三、案例分析参考文献 一、用途 可视区域即我们浏览网页的设备肉眼可见的区域&#xff0c;如下图 在日常开发中&#xff0c;我们经常需要判断目标元素是…...

Go Run - Go 语言中的简洁指令

原文&#xff1a;breadchris - 2024.02.21 也许听起来有些傻&#xff0c;但go run是我最喜欢的 Go 语言特性。想要运行你的代码&#xff1f;只需go run main.go。它是如此简单&#xff0c;我可以告诉母亲这个命令&#xff0c;她会立即理解。就像 Go 语言的大部分功能一样&…...

Spring全面精简总结

Spring两大核心功能&#xff1a;IOC控制反转、AOP面向切面的编程 控制反转(loC&#xff0c;Inversion of Control)&#xff0c;是一个概念&#xff0c;是一种思想。指将传统上由程序代码直接操控的对象调用权交给容器&#xff0c;通过容器来实现对象的装配和管理。控制反转就是…...

低代码开发如何助力数字化企业管理系统平台构建

随着数字化时代的到来&#xff0c;企业对于管理系统的需求日益增长。高效的管理系统可以提高企业的运作效率&#xff0c;降低成本&#xff0c;提升竞争力。然而&#xff0c;传统的开发方式在应对日益复杂的管理系统需求时&#xff0c;显得力不从心。低代码开发作为一种新兴的开…...

ElasticSearch之零碎知识点

写在前面 本文记录es的零碎知识点&#xff0c;包括但不限于概念&#xff0c;集群方式&#xff0c;等。 1&#xff1a;词项查询 VS 全文查询 词项查询&#xff1a;查询的内容不做分词处理&#xff0c;输入的什么查询什么。 全文查询&#xff1a;查询的内容会做分词处理&…...

【春运抢票攻略浅析】

参考 最全12306放票规则&#xff0c;抢票策略&#xff0c;候补作用2023年12306抢票攻略&#xff08;纯技巧&#xff09; 研究放票规则&#xff0c;候补的时候车次进行一下挑选&#xff0c;能够买长乘短的尽量买长&#xff0c;不要候补一些区间票吧&#xff0c;这是一开始放票…...

【Java EE初阶二十五】简单的表白墙(一)

1. 前端部分 1.1 前端代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"wid…...

人工智能的新浪潮:探索OpenAI的Sora视频模型及其对未来创作的影响

OpenAI的最新AI视频模型Sora&#xff0c;自发布以来&#xff0c;已成为科技界的热点。Sora的核心能力在于将文本描述转化为高清视频片段&#xff0c;标志着在视频生成领域的一次重大突破。Sora的特点包括使用深度理解语言的能力来准确解释提示&#xff0c;以及生成表达丰富情感…...

【c语言】字符函数和字符串函数(上)

前言 在编程的过程中&#xff0c;我们经常要处理字符和字符串&#xff0c;为了⽅便操作字符和字符串&#xff0c;C语⾔标准库中提供了⼀系列库函数~ 欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 目录 前言 1. 字符分…...

React18源码: schedule任务调度messageChannel

React调度原理(scheduler) 在React运行时中&#xff0c;调度中心&#xff08;位于scheduler包&#xff09;是整个React运行时的中枢&#xff08;其实是心脏&#xff09;&#xff0c;所以理解了scheduler调度&#xff0c;就基本掌握了React的核心React两大循环&#xff1a;从宏…...

Jmeter 学习目录

Jmeter 所有内容均以学习为主输出内容&#xff0c;按照最小单位和基础进行输出。 如果有看不懂&#xff0c;或者有不明确的内容&#xff0c;欢迎大家留言说明。 Jmeter系列&#xff08;1&#xff09;Mac Jmeter下载安装启动 Jmeter系列&#xff08;2&#xff09;Jmeter 目录介…...

计算机网络 数据链路层课后题

1.以太网帧有哪些不同的封装格式&#xff1f;他们有何区别和应用场景&#xff1f; 以太网II封装&#xff08;Ethernet II&#xff09;&#xff1a;以太网II封装是最常用的以太网封装格式&#xff0c;也被称为DIX封装。它在数据链路层首部使用6个字节的目的MAC地址和6个字节的源…...

实现验证码功能

Kaptcha 文章目录 Kaptcha介绍插件使用介绍原理引入依赖生成验证码 验证码小项目初始化前端代码约定前后端交互接口接口定义 介绍 Kaptcha 是Google的⼀个⾼度可配置的实⽤验证码⽣成⼯具 https://code.google.com/archive/p/kaptcha ⽹上有很多⼈甚⾄公司基于Google的kaptc…...

PyQt6的开发流程(密码生成小程序为例)

PyQt6的开发流程&#xff08;密码生成小程序为例&#xff09; 文章目录 PyQt6的开发流程&#xff08;密码生成小程序为例&#xff09;一、流程介绍与概览1. 界面与逻辑分离的开发流程2. PyQt6的开发流程 二、打开 designer.exe 创建文件三、用QT设计师绘制界面保存成ui1. QT常用…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...