当前位置: 首页 > news >正文

pytorch中的各种计算

  对tensor矩阵的维度变换,加减乘除等是深度学习中的常用操作,本文对一些常用方法进行总结

矩阵乘法

  混合矩阵相乘,官网

torch.matmul(input, other, *, out=None) → Tensor

  这个方法执行矩阵相乘操作,需要第一个矩阵的最后一个维度和第二个矩阵的第一个维度相同,即:假设我们有两个矩阵 A 和 B,它们的 size 分别为 (m, n) 和 (n, p),那么 A x B 的 size 为 (m, p)。
  矩阵点乘,官网

torch.mul(input, other, *, out=None) → Tensor

  这个方法对矩阵做点积运算(也可简写为*),这个方法要求第一个矩阵的第一个维度和第二个矩阵的第一个维度对应。torch.dot()类似于mul(),它是向量(即只能是一维的张量)的对应位相乘再求和,返回一个tensor。

矩阵维度变换

  tensor.view方法,用于调整矩阵的维度,这个方法要求矩阵在调整为度前后的元素个数必须是相同的,官网,例子:

>>> t = torch.rand(4, 4)
>>> b = t.view(2, 8)
>>> t.storage().data_ptr() == b.storage().data_ptr()  # `t` and `b` share the same underlying data.
True
# Modifying view tensor changes base tensor as well.
>>> b[0][0] = 3.14
>>> t[0][0]
tensor(3.14)

  torch中对矩阵的压缩和解压操作:torch.squeeze和torch.unsqueeze,这两种方法的作用是压缩矩阵中的某一个维度或者增加一个维度,官网,两种方法的详解可以参考我之前的笔记pytorch中的torch.squeeze和torch.unsqueeze。
  矩阵填充,官网torch.nn.functional.pad

torch.nn.functional.pad(input, pad, mode='constant', value=None) → Tensor
Args:"""input:四维或者五维的tensor Variabepad:不同Tensor的填充方式1.四维Tensor:传入四元素tuple(pad_l, pad_r, pad_t, pad_b),指的是(左填充,右填充,上填充,下填充),其数值代表填充次数2.六维Tensor:传入六元素tuple(pleft, pright, ptop, pbottom, pfront, pback),指的是(左填充,右填充,上填充,下填充,前填充,后填充),其数值代表填充次数mode: ’constant‘, ‘reflect’ or ‘replicate’三种模式,指的是常量,反射,复制三种模式value:填充的数值,在"contant"模式下默认填充0,mode="reflect" or "replicate"时没有			

  如果给入的填充次数是负数,该函数可以实现从该方向对矩阵的裁剪操作。
  需要注意的是,本文中提到的所有方法都支持broadcast操作,也就是,除了参与操作的最后两个维度(矩阵),前面的所有维度都会被认为是batch,以torch,matmul为例,该方法使用两个tensor的后两个维度来计算,其他的维度都可以认为是batch。假设两个输入的维度分别是 i n p u t ( 1000 × 500 × 99 × 11 ) input(1000×500×99×11) input(1000×500×99×11), o t h e r ( 500 × 11 × 99 ) other(500×11×99) other(500×11×99),那么我们可以认为 t o r c h . m a t m u l ( i n p u t , o t h e r ) torch.matmul(input,other) torch.matmul(input,other) 首先是进行后两位矩阵乘法得到 ( 99 × 99 ) (99×99) (99×99) ,然后分析两个参数的batch size分别是 ( 1000 × 500 ) (1000×500) (1000×500) ( 500 ) (500) (500), 可以广播成为 ( 1000 × 500 ) (1000×500) (1000×500),因此最终输出的维度是 ( 1000 × 500 × 99 × 99 ) (1000×500×99×99) (1000×500×99×99)

相关文章:

pytorch中的各种计算

对tensor矩阵的维度变换,加减乘除等是深度学习中的常用操作,本文对一些常用方法进行总结 矩阵乘法 混合矩阵相乘,官网 torch.matmul(input, other, *, outNone) → Tensor这个方法执行矩阵相乘操作,需要第一个矩阵的最后一个维度…...

大数据技术之 Kafka

大数据技术之 Kafka 文章目录 大数据技术之 Kafka第 1 章 Kafka 概述1.1 定义1.2 消息队列1.2.1 传统消息队列的应用场景1.2.2 消息队列的两种模式 1.3 Kafka 基础架构 第 2 章 Kafka 快速入门2.1 安装部署2.1.1 集群规划2.1.2 集群部署2.1.3 集群启停脚本 2.2 Kafka 命令行操作…...

【GB28181】wvp-GB28181-pro部署安装教程(Ubuntu平台)

目录 前言1 安装依赖2 安装MySQL3 安装redis4 编译ZLMediaKit代码及依赖下载编译运行(如果要运行wvp整个项目,这步可以先不执行) 5 编译wvp-pro下载源码(建议从github上下载,gitee上维护有时候不是很同步)编…...

CentOS删除除了最近5个JAR程序外的所有指定Java程序

帮我写一个shell脚本,ps -eo pid,lstart,cmd --sort-start_time | grep "pgz-admin"查到的结果,返回的所有进程PID,第六个之上的,全部kill 当然,你可以创建一个简单的Shell脚本来完成这个任务。以下是一个例…...

面试redis篇-13Redis为什么那么快

Redis是纯内存操作,执行速度非常快采用单线程,避免不必要的上下文切换可竞争条件,多线程还要考虑线程安全问题使用I/O多路复用模型,非阻塞IOI/O多路复用模型 Redis是纯内存操作,执行速度非常快,它的性能瓶颈是网络延迟而不是执行速度, I/O多路复用模型主要就是实现了高效…...

python Matplotlib Tkinter--pack 框架案例

环境 python:python-3.12.0-amd64 包: matplotlib 3.8.2 pillow 10.1.0 版本一 import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk import tkinter as tk import tkinter.messagebox as messagebox…...

连接未来:嵌入式系统在物联网时代的应用

连接未来:嵌入式系统在物联网时代的应用 随着物联网技术的不断发展,嵌入式系统在物联网时代扮演着至关重要的角色。嵌入式系统作为连接物理世界和数字世界的桥梁,为物联网的实现提供了技术支持和基础设施。以下将从几个方面探讨嵌入式系统在…...

自动驾驶中的障碍物时间对齐法

描述 自动驾驶算法使用的系统往往不是实时系统,因此每个节点间拿到的数据可能不是同一时间的数据,从而造成系统误差,针对这一现象,工程上往往采用时间对齐内插外推法。这里我们用感知障碍物来举例。 自动驾驶系统有许多重要模块…...

介绍 PIL+IPython.display+mtcnn for 音视频读取、标注

1. nn.NLLLoss是如何计算误差的? nn.NLLLoss是负对数似然损失函数,用于多分类问题中。它的计算方式如下:首先,对于每个样本,我们需要将其预测结果通过softmax函数转换为概率分布。softmax函数可以将一个向量映射为一个概率分布&…...

C语言中strstr函数的使用!

strstr函数的作用是什么&#xff1f; 查找子字符串 具体直接看下面的这段代码我相信你必明白 #define _CRT_SECURE_NO_WARNINGS 1 #include<stdio.h> int main() { char *p1 "abcdefghijklmnopqrstuvwxyz"; char* p2 "abc"; char* r…...

Vue项目中,src目录下的vue.app文件介绍

在 Vue 项目中&#xff0c;src 文件夹通常包含了项目的核心代码。在这个文件夹下&#xff0c;App.vue 是一个特殊的文件&#xff0c;它代表了整个 Vue 应用的根组件。 App.vue 是一个单文件组件&#xff08;Single File Component, 简称 SFC&#xff09;&#xff0c;它允许你将…...

【Android】坐标系

Android 系统中有两种坐标系&#xff0c;分别为 Android 坐标系和 View 坐标系。了解这两种坐标系能够帮助我们实现 View 的各种操作&#xff0c;比如我们要实现 View 的滑动&#xff0c;你连这个 View 的位置都不知道&#xff0c;那如何去操作呢&#xff1f; 一、Android 坐标…...

OSCP靶场--Slort

OSCP靶场–Slort 考点(1.php 远程文件包含 2.定时任务提权) 1.nmap扫描 ┌──(root㉿kali)-[~/Desktop] └─# nmap 192.168.178.53 -sV -sC -p- --min-rate 5000 Starting Nmap 7.92 ( https://nmap.org ) at 2024-02-24 04:37 EST Nmap scan report for 192.168.178.53 …...

大数据职业技术培训包含哪些

技能提升认证考试&#xff0c;旨在通过优化整合涵盖学历教育、职业资格、技术水平和高新技术培训等各种教育培训资源&#xff0c;通过大数据行业政府引导&#xff0c;推进教育培训的社会化&#xff0c;开辟教育培训新途径&#xff0c;围绕大数据技术人才创新能力建设&#xff0…...

【Java程序设计】【C00313】基于Springboot的物业管理系统(有论文)

基于Springboot的物业管理系统&#xff08;有论文&#xff09; 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的物业管理系统&#xff0c;本系统有管理员、物业、业主以及维修员四种角色权限&#xff1b; 管理员进入主页面&#xff0c;主要功能包…...

TensorFlow训练大模型做AI绘图,需要多少的GPU算力支撑

TensorFlow训练大模型做AI绘图&#xff0c;需要多少的GPU算力支撑&#xff01;这个问题就涉及到了资金投资的额度了。众所周知&#xff0c;现在京东里面一个英伟达的显卡&#xff0c;按照RTX3090(24G显存-涡轮风扇&#xff09;版本报价是7000-7500之间。如果你买一张这样的单卡…...

docker创建mongodb数据库容器

介绍 本文将通过docker创建一个mongodb数据库容器 1. 拉取mongo镜像 docker pull mongo:3.63.6版本是一个稳定的版本&#xff0c;可以选择安装此版本。 2. 创建并启动主数据库 容器数据卷配置 /docker/mongodb/master/data # 数据库数据目录&#xff08;宿主机&am…...

Python并发编程:多线程-线程理论

一 什么是线程 在传统操作系统中&#xff0c;每个进程有一个地址空间&#xff0c;而且默认就有一个控制线程 线程顾名思义&#xff0c;就是一条流水线工作的过程&#xff08;流水线的工作需要电源&#xff0c;电源就相当于CPU&#xff09;&#xff0c;而一条流水线必须属于一个…...

自定义Chrome的浏览器开发者工具DevTools界面的字体和样式

Chrome浏览器开发者工具默认的字体太小&#xff0c;想要修改但没有相关设置。 外观——字体可以自定义字体&#xff0c;但大小不可以调整。 github上有人给出了方法 整理为中文教程&#xff1a; 1.打开浏览器开发者工具&#xff0c;点开设置——实验&#xff0c;勾上红框设…...

人事|人事管理系统|基于Springboot的人事管理系统设计与实现(源码+数据库+文档)

人事管理系统目录 目录 基于Springboot的人事管理系统设计与实现 一、前言 二、系统功能设计 三、系统实现 1、管理员登录 2、员工管理 3、公告信息管理 4、公告类型管理 5、培训管理 6、培训类型管理 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...