开源的 Python 数据分析库Pandas 简介
阅读本文之前请参阅-----如何系统的自学python
Pandas 是一个开源的 Python 数据分析库,它提供了高性能、易用的数据结构和数据分析工具。Pandas 特别适合处理表格数据,例如时间序列数据、异构数据等。以下是对 Pandas 的简明扼要的介绍,包括一些基本的概念和操作示例。
Pandas 的核心数据结构
1. **Series**:一维的带标签数组,可以存储任何数据类型(整数、字符串、浮点数、Python 对象等)。
2. **DataFrame**:二维的表格型数据结构,具有灵活的行索引和可变的列名。DataFrame 可以被看作是一个由 Series 组成的字典。
安装 Pandas
在 Python 环境中,你可以使用 pip 来安装 Pandas:
pip install pandas
创建 Series
创建一个 Series 非常简单,你只需要传递一个列表或数组给 Series 构造器,并为它指定一个索引。
import pandas as pd# 创建一个 Series
s = pd.Series([1, 3, 5, 7, 9], index=['a', 'b', 'c', 'd', 'e'])
print(s)
输出:
a 1
b 3
c 5
d 7
e 9
dtype: int64
创建 DataFrame
DataFrame 可以通过多种方式创建,例如从一个字典、一个列表的列表、一个 Series 的字典等。
```python
# 创建一个 DataFrame
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'],'Age': [24, 27, 22],'Salary': [85000, 92000, 60000]
})
print(df)
输出:
Name Age Salary
0 Alice 24 85000
1 Bob 27 92000
2 Charlie 22 60000
数据访问
在 Pandas 中,你可以使用多种方式来访问数据。
# 访问单个值
print(df.loc[0, 'Name']) # 输出:Alice# 访问多行多列
print(df.loc[0:1, ['Name', 'Age']])# 访问列
print(df['Name'])# 访问行
print(df.loc[0])# 使用条件访问数据
print(df[df['Age'] > 25])
数据操作
Pandas 提供了丰富的数据操作功能,包括排序、筛选、合并、分组等。
# 排序
df_sorted = df.sort_values(by='Age', ascending=False)
print(df_sorted)# 筛选
df_filtered = df[df['Salary'] > 70000]
print(df_filtered)# 合并
df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [5, 6], 'B': [7, 8]})
df_merged = pd.merge(df1, df2, on='A')
print(df_merged)# 分组
grouped = df.groupby('Name')['Salary'].mean()
print(grouped)
数据清洗
Pandas 提供了多种数据清洗工具,例如处理缺失值、重复值等。
# 处理缺失值
df['Missing'] = [1, 2, None, 4]
df_cleaned = df.dropna() # 删除包含缺失值的行
print(df_cleaned)# 处理重复值
df['Duplicate'] = [1, 1, 2, 2]
df_unique = df.drop_duplicates() # 删除重复的行
print(df_unique)
数据聚合
Pandas 允许你对数据进行聚合操作,例如计算总和、平均值、最大值、最小值等。
# 聚合操作
print(df.sum()) # 计算每列的总和
print(df.mean()) # 计算每列的平均值
print(df.max()) # 计算每列的最大值
print(df.min()) # 计算每列的最小值
时间序列分析
Pandas 在处理时间序列数据方面非常强大,它提供了许多用于日期和时间的工具。
# 创建时间序列数据
dates = pd.date_range('20230101', periods=3)
ts = pd.Series([1.5, -1.2, 2.8], index=dates)
print(ts)# 时间序列操作
print(ts.resample('D').mean()) # 按天聚合数据
结论
Pandas 是一个功能强大的数据分析库,它提供了丰富的数据结构和数据分析工具。通过使用 Pandas,你可以轻松地进行数据清洗、处理、分析和可视化。无论是数据科学家、数据分析师还是数据工程师,Pandas 都是 Python 生态系统中不可或缺的一部分。掌握 Pandas 的基本用法,将极大地提高你的数据处理能力。
相关文章:

开源的 Python 数据分析库Pandas 简介
阅读本文之前请参阅-----如何系统的自学python Pandas 是一个开源的 Python 数据分析库,它提供了高性能、易用的数据结构和数据分析工具。Pandas 特别适合处理表格数据,例如时间序列数据、异构数据等。以下是对 Pandas 的简明扼要的介绍,包括…...

LeetCode 2125.银行中的激光束数量
银行内部的防盗安全装置已经激活。给你一个下标从 0 开始的二进制字符串数组 bank ,表示银行的平面图,这是一个大小为 m x n 的二维矩阵。 bank[i] 表示第 i 行的设备分布,由若干 ‘0’ 和若干 ‘1’ 组成。‘0’ 表示单元格是空的࿰…...
【探索AI】Sora - 探索AI视频模型的无限可能
Sora - 探索AI视频模型的无限可能 随着人工智能技术的飞速发展,AI视频模型已成为科技领域的新热点。而在这个浪潮中,OpenAI推出的首个AI视频模型Sora,以其卓越的性能和前瞻性的技术,引领着AI视频领域的创新发展。让我们将一起探讨…...

NGINX的重写与反向代理机制解析
目录 引言 一、重写功能 (一)if指令 1.判断访问使用的协议 2.判断文件 (二)return指令 1.设置返回状态码 2.返回指定内容 3.指定URL (三)set指令 1.手动输入变量值 2.调用其它变量值为自定义变…...

JVM的深入理解
1、JVM(Java虚拟机):我们java编译时候,下通过把avac把.java文件转换成.class文件(字节码文件),之后我们通过jvm把字节码文件转换成对应的cpu能识别的机器指令(翻译官角色)…...

JavaWeb——007MYSQL(DQL多表设计)
# 数据库开发-MySQL 一级目录二级目录三级目录 1. 数据库操作-DQL1.1 介绍1.2 语法1.3 基本查询1.4 条件查询1.5 聚合函数1.6 分组查询1.7 排序查询1.8 分页查询1.9 案例1.9.1 案例一1.9.2 案例二 2. 多表设计2.1 一对多2.1.1 表设计2.1.2 外键约束 2.2 一对一2.3 多对多2.4 案…...
深度学习500问——Chapter01:数学基础
文章目录 前言 1.1 向量和矩阵 1.1.1 标量、向量、矩阵、张量之间的联系 1.1.2 张量与矩阵的区别 1.1.3 矩阵和向量相乘结果 1.1.4 向量和矩阵的范数归纳 1.1.5 如何判断一个矩阵为正定 1.2 导数和偏导数 1.2.1 导数偏导计算 1.2.2 导数和偏导数有什么区别 1.3 特征值和特征向量…...

day03_登录注销(前端接入登录,异常处理, 图片验证码,获取用户信息接口,退出功能)
文章目录 1. 前端接入登录1.1 修改前端代码1.2 跨域请求1.2.1 跨域请求简介1.2.2 COSR概述CORS简介CORS原理 1.2.3 CORS解决跨域 2. 异常处理2.1 提示空消息分析2.2 系统异常分类2.3 异常处理2.2.1 方案一2.2.2 方案二 3. 图片验证码3.1 图片验证码意义3.2 实现思路3.3 后端接口…...

k8s初始化报错 [ERROR CRI]: container runtime is not running: ......
一、环境参数 linux系统为centos7kubernetes版本为v1.28.2containerd版本为1.6.28 二、报错内容 执行初始化命令kubeadm init命令时报错,内容如下 error execution phase preflight: [preflight] Some fatal errors occurred:[ERROR CRI]: container runtime is…...
vscode windows 免密登录 powershell.sh
Linux 生成秘钥 ssh-keygenwindows powershell.sh $HOST_IP"zhang192.168.1.1" $PUBPATH"$HOME\.ssh\id_rsa.pub" $KEY(Get-Content "$PUBPATH" | Out-String); ssh "$HOST_IP" "mkdir -p ~/.ssh && chmod 700 ~/.ssh …...
10 种3D 建模技术
在本文中,我将列出 10 种不同类型的 3D 建模。也许可以了解下一个项目将走向何方,或者你可能会像我一样惊讶,究竟有多少 3D 被用作以多种方式进行可视化的工具。这些是我们将讨论和探索的建模类型: 盒子造型多边形建模Nurbs 和曲…...

常见的socket函数封装和多进程和多线程实现服务器并发
常见的socket函数封装和多进程和多线程实现服务器并发 1.常见的socket函数封装2.多进程和多线程实现服务器的并发2.1多进程服务器2.2多线程服务器2.3运行效果 1.常见的socket函数封装 accept函数或者read函数是阻塞函数,会被信号打断,我们不能让它停止&a…...

Tomcat架构分析
Tomcat的核心组件 Tomcat将请求器和处理器分离,使用多种请求器支持不同的网络协议,而处理器只有一个。从而网络协议和容器解耦。 Tomcat的容器 Host:Tomcat提供多个域名的服务,其将每个域名都视为一个虚拟的主机,在…...
旧项目集成阿里云滑动验证码(web和H5方式)
简述 旧项目集成阿里云滑动验证码(web和H5方式) 适用于servlet和HTML项目,VUE + springboot请看另一篇文档 前情提示 系统: 一说 部分截图、链接等因过期、更换域名、MD语法等可能不显示,可联系反馈(备注好博文地址),谢谢❤带有#号、删除线、不操作、不执行…...

机器人内部传感器阅读梳理及心得-速度传感器-数字式速度传感器
在机器人控制系统中,增量式编码器既可以作为位置传感器测量关节相对位置,又可作为速度传感器测量关节速度。当作为速度传感器时,既可以在模拟量方式下使用,又可以在数字量方式下使用。 模拟式方法 在这种方式下,需要…...

【vue+element ui】大屏自适应中el-select下拉内容在低分辨率下显示不全问题解决
目录 背景 现象 解决方案 背景 最近要把一个1920px*1080px的大屏改成自适应的;最低适配到1028px*720px; 现象 自适应适配改完之后 将电脑屏幕改成1028px*720px分辨率后,下拉显示正常 通过谷歌浏览器设置Toggle device toolbar为1028px*…...

前端架构: 脚手架之多package项目管理和架构
多package项目管理 1 )多package项目管理概述 通常来说,当一个项目变大了以后,我们就要对这个项目进行拆分在前端当中,对于项目进行拆分的方式,通常把它称之为javascript包管理需要使用一个工具叫做 npm (Node Packag…...
【C# 多线程】如何停止正在运行中的子线程
如何停止正在运行中的子线程 通过协作式取消模式强制终止线程(可能存在资源不能及时释放的泄漏风险) 通过协作式取消模式 在线程函数中,你可以周期性地检查一个标志位,以确定是否应该停止线程。该标记位可以是共享变量࿰…...
服务器机房安全守护:五大物理安全实践
服务器机房是数字企业的心脏。无论是企业家还是经验丰富的IT专业人员,都知道服务器机房的安全性至关重要。如果没有采用适当的物理安全措施,其服务器很容易受到盗窃、人为破坏和自然灾害的破坏。 在保护服务器机房的领域内,需要采用多方面的…...

spring boot 修复 Spring Framework URL解析不当漏洞(CVE-2024-22243)
漏洞描述 当应用程序使用UriComponentsBuilder来解析外部提供的URL(如通过查询参数)并对解析的URL的主机执行验证检查时可能容易受到Open重定向攻击和SSRF攻击,导致网络钓鱼和内部网络探测等。 受影响产品或系统 6.1.0 < Spring Framew…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
为什么要创建 Vue 实例
核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合
作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...