当前位置: 首页 > news >正文

KL divergence(KL 散度)详解

本文用一种浅显易懂的方式说明KL散度。
参考资料

KL散度本质上是比较两个分布的相似程度。

现在给出2个简单的离散分布,称为分布1和分布2.

分布1有3个样本,
其中A的概率为50%, B的概率为40%,C的概率为10%

分布2也有3个样本:
其中A的概率为50%,B的概率为10%,C的概率为40%。

现在想比较分布1和分布2的相似程度。

直观看上去分布1和分布2中样本A的概率是一样的,仅仅B和C的概率换了一下。
分布应该是相似的,但是如何量化来看呢。

可以这样做,用分布1的各个样本的概率和分布2样本概率做比值,相加再求平均。

现假设分布1的概率分布为P,分布2的概率分布为Q,
那么P(A) = 0.5, P(B)=0.4, P( C) = 0.1
Q(A) = 0.5, Q(B) = 0.1, Q( C) = 0.4,

各样本概率做比值之后为:
P(A)/Q(A) + P(B)/Q(B) + P( C)/Q( C) = 1+4+1/4
再对3个样本取平均: (1+4+1/4) / 3 = 1.75
这就是我们想要的分布1和分布2的相似度。

不过有一个问题,
可以看到P(B)和Q(B), P( C)和Q( C)仅仅概率做了交换,它们的相似度大小应该是一样的(仅仅方向不一样),
也就是说P(B)/Q(B), P( C)/Q( C)的绝对值应该是一样的,符号不一样。
但是现在,哪个分子大哪个结果就大,这是不应该的,

想要这样一个函数来解决这个问题,
f(4) = y
f(1/4) = -y,
这里的4为P(B)/Q(B), 1/4为P( C)/Q( C),
经过f(x)后得到的应该是同样的相似度大小,只是方向不一样,一个是变大的方向,一个是变小的方向,用负号表示方向的不同。

那么什么样的函数能满足f(x)呢,
可以取几个值画一下,你会发现,这个f(x)就是log(x)。

那么现在把刚才的相似度修改一下,
把简单的P(x)/Q(x)换成log(P(x) / Q(x)).
于是变为: ∑ 1 n l o g P ( x ) Q ( x ) / n \sum_{1}^{n} log\frac{P(x)}{Q(x)} / n 1nlogQ(x)P(x)/n

对样本取平均值表示每个样本的weight都是1/n,
不要取这么平均,把weight改为P(x),

那么就得到 ∑ 1 n P ( x ) l o g P ( x ) Q ( x ) \sum_{1}^{n} P(x) log\frac{P(x)}{Q(x)} 1nP(x)logQ(x)P(x)

这就是我们熟悉的KL散度,它比较的是分布P和分布Q的相似度。
“||”右边的Q表示是reference分布。

K L ( P ∣ ∣ Q ) = ∑ 1 n P ( x ) l o g P ( x ) Q ( x ) KL(P||Q) = \sum_{1}^{n} P(x) log\frac{P(x)}{Q(x)} KL(P∣∣Q)=1nP(x)logQ(x)P(x)

相关文章:

KL divergence(KL 散度)详解

本文用一种浅显易懂的方式说明KL散度。 参考资料 KL散度本质上是比较两个分布的相似程度。 现在给出2个简单的离散分布,称为分布1和分布2. 分布1有3个样本, 其中A的概率为50%, B的概率为40%,C的概率为10% 分布2也有3个样本: 其…...

AzerothCore@FreeBSD安装记录

尝试在FreeBSD系统下安装AzerothCore 首先安装相关软件 pkg install cmake mysql80-server boost-all装完mysql之后提示: MySQL80 has a default /usr/local/etc/mysql/my.cnf, remember to replace it with your own or set mysql_optfile"$YOUR_CNF_FILE i…...

vue .env配置环境变量

最近使用的不同的环境有点多了,接口文件ip一直在替换打包,看了下文档,有个方案使用.env配置不同的环境运行打包 vue 现在已经兼容了env ,无需下载 创建文件(根目录) 创建.env.development,.env.…...

ThreadLocal介绍

文章目录 ThreadLocal源码分析:set方法get方法remove方法 ThreadLocal内存泄漏问题 ThreadLocal ThreadLocal提供了线程局部变量,每个线程都可以通过set和get方法来对这个变量进行操作,但不会和其他线程的局部变量冲突,实现了线程…...

【Linux系统化学习】线程概念

目录 线程的概念 线程的引出 什么是线程 理解线程比进程更加的轻量化 线程的优点 现成的缺点 线程异常 线程用途 Linux进程VS线程 线程的简单现象 线程的概念 有关操作系统的书籍或者课本都会这样描述线程: 线程是比进程轻量化的一种执行流线程是进程内部…...

Redis集群模式

分片 面试题:为什么Redis的最大槽位是16384? 翻译一下作者的话: 解读一下:...

执行go get xxx报错

1、执行命令 go get github.com/go-redis/redis/v8 报错 : go: coding.jd.com/xxx/xxxxxxv0.0.0-xxxxxxxxxx: invalid version: git ls-remote -q origin in /users/douhao7/go/pkg/mod/cache/vcs/xxxxxxxxxxxxxx: exit status 128: 致命错误:could not read use…...

MATLAB基础语法与实践

文章目录 初级篇MATLAB简介特点 安装和配置界面介绍 中级篇基础语法变量表达式函数 数据类型整数和浮点数复数字符串单元数组 高级篇脚本与函数编写脚本编写函数编写 图形绘制数据分析 实践篇实例演示1:矩阵运算实例演示2:数据可视化 初级篇 MATLAB简介…...

智能边缘小站 CloudPond(低延迟、高带宽和更好的数据隐私保护)

智能边缘小站 CloudPond(低延迟、高带宽和更好的数据隐私保护) 边缘小站的主要功能是管理用户在线下部署的整机柜设施,一个边缘小站关联一个华为云指定的区域和一个用户指定的场地,相关的资源运行状况监控等。 边缘计算 迈入5G和AI时代,新…...

回归预测 | Matlab实现RIME-BP霜冰算法优化BP神经网络多变量回归预测

回归预测 | Matlab实现RIME-BP霜冰算法优化BP神经网络多变量回归预测 目录 回归预测 | Matlab实现RIME-BP霜冰算法优化BP神经网络多变量回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现RIME-BP霜冰算法优化BP神经网络多变量回归预测(完整…...

LeetCode15:三数之和

题目描述 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 注意:答案中不可以包含重复的三元组…...

【详识JAVA语言】面向对象程序三大特性之三:多态

多态 多态的概念 多态的概念:通俗来说,就是多种形态,具体点就是去完成某个行为,当不同的对象去完成时会产生出不同的状态。 多态实现条件 在java中要实现多态,必须要满足如下几个条件,缺一不可&#xf…...

nginx(三)实现反向代理客户端 IP透传

正常情况下,客户端去访问代理服务器,然后代理服务器再取访问真实服务器,在真实服务器上,只能显示代理服务器的ip地址,而不显示客户端的ip地址,如果想让客户端的ip地址也能在真实服务端看见,这一…...

深入Java日志框架及其最佳实践

概述 在Java应用开发中,日志框架是确保应用稳定性和可观察性的关键组件。它帮助开发者记录应用的行为、诊断问题,并监控系统的健康状况。随着Java生态系统的不断发展,各种日志框架也应运而生,各有特点和优势。本文将详细探讨几个…...

threejs显示本地硬盘上的ply文件,通过webapi

由于ply文件是第三方提供的&#xff0c;threejs无法用绝路路径的方式显示ply 所以想通过webapi把ply通过url地址的方式给threejs 1.webapi部分 /// <summary>/// 获取PLY文件/// </summary>/// <returns></returns>[HttpPost(Name "GetPly&qu…...

代码随想录day10(2)字符串:反转字符串Ⅱ (leetcode541)

题目要求&#xff1a;给定一个字符串 s 和一个整数 k&#xff0c;从字符串开头算起, 每计数至 2k 个字符&#xff0c;就反转这 2k 个字符中的前 k 个字符。如果剩余字符少于 k 个&#xff0c;则将剩余字符全部反转。如果剩余字符小于 2k 但大于或等于 k 个&#xff0c;则反转前…...

【MySQL】_联合查询基础表

联合查询也称为多表查询&#xff0c;是将多个表联合到一起进行查询&#xff1b; 笛卡尔积是联合查询的基础&#xff0c;笛卡尔积其实就是一种排列组合&#xff0c;把两张表的记录尽可能地排列组合出n种情况&#xff1a; 以两张表&#xff1a;班级表与学生表为例&#xff0c;计…...

InnoDB存储引擎对MVCC的实现

MVCC MVCC的目的 在搞清楚MVCC之前,我们要搞懂一个问题,MVCC到底解决的是什么问题? 我用一句话概括,那就是为了解决读-写可以一起的问题! 在我们的印象里,InnoDB可以读读并发,不能读写并发,或者写写并发 这是很正常的想法,因为如果读写并发的化,会有并发问题 而对于写写…...

【精选】Java项目介绍和界面搭建——拼图小游戏 中

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收藏 …...

C++ //练习 10.16 使用lambda编写你自己版本的biggies。

C Primer&#xff08;第5版&#xff09; 练习 10.16 练习 10.16 使用lambda编写你自己版本的biggies。 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09; 工具&#xff1a;vim 代码块 /*******************************************************************…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...