C# OpenCvSharp DNN FreeYOLO 人脸检测
目录
效果
模型信息
项目
代码
下载
C# OpenCvSharp DNN FreeYOLO 人脸检测
效果

模型信息
Inputs
-------------------------
name:input
tensor:Float[1, 3, 192, 320]
---------------------------------------------------------------
Outputs
-------------------------
name:output
tensor:Float[1, 1260, 6]
---------------------------------------------------------------
项目

代码
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Windows.Forms;namespace OpenCvSharp_DNN_Demo
{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;float confThreshold;float nmsThreshold;int num_stride = 3;float[] strides = new float[3] { 8.0f, 16.0f, 32.0f };string modelpath;int inpHeight;int inpWidth;List<string> class_names;int num_class;Net opencv_net;Mat BN_image;Mat image;Mat result_image;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){confThreshold = 0.8f;nmsThreshold = 0.5f;modelpath = "model/yolo_free_huge_widerface_192x320.onnx";inpHeight = 192;inpWidth = 320;opencv_net = CvDnn.ReadNetFromOnnx(modelpath);class_names = new List<string>();class_names.Add("face");num_class = 1;image_path = "test_img/1.jpg";pictureBox1.Image = new Bitmap(image_path);}private unsafe void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;Application.DoEvents();image = new Mat(image_path);float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);int neww = (int)(image.Cols * ratio);int newh = (int)(image.Rows * ratio);Mat dstimg = new Mat();Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant);BN_image = CvDnn.BlobFromImage(dstimg);//配置图片输入数据opencv_net.SetInput(BN_image);//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();dt1 = DateTime.Now;opencv_net.Forward(outs, outBlobNames);dt2 = DateTime.Now;int num_proposal = outs[0].Size(1);int nout = outs[0].Size(2);float* pdata = (float*)outs[0].Data;List<float> confidences = new List<float>();List<Rect> boxes = new List<Rect>();List<int> classIds = new List<int>();for (int n = 0; n < num_stride; n++){int num_grid_x = (int)Math.Ceiling(inpWidth / strides[n]);int num_grid_y = (int)Math.Ceiling(inpHeight / strides[n]);for (int i = 0; i < num_grid_y; i++){for (int j = 0; j < num_grid_x; j++){float box_score = pdata[4];int max_ind = 0;float max_class_socre = 0;for (int k = 0; k < num_class; k++){if (pdata[k + 5] > max_class_socre){max_class_socre = pdata[k + 5];max_ind = k;}}max_class_socre = max_class_socre* box_score;max_class_socre = (float)Math.Sqrt(max_class_socre);if (max_class_socre > confThreshold){float cx = (0.5f + j + pdata[0]) * strides[n]; //cxfloat cy = (0.5f + i + pdata[1]) * strides[n]; //cyfloat w = (float)(Math.Exp(pdata[2]) * strides[n]); //wfloat h = (float)(Math.Exp(pdata[3]) * strides[n]); //hfloat xmin = (float)((cx - 0.5 * w) / ratio);float ymin = (float)((cy - 0.5 * h) / ratio);float xmax = (float)((cx + 0.5 * w) / ratio);float ymax = (float)((cy + 0.5 * h) / ratio);int left = (int)((cx - 0.5 * w) / ratio);int top = (int)((cy - 0.5 * h) / ratio);int width = (int)(w / ratio);int height = (int)(h / ratio);confidences.Add(max_class_socre);boxes.Add(new Rect(left, top, width, height));classIds.Add(max_ind);}pdata += nout;}}}int[] indices;CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);result_image = image.Clone();for (int ii = 0; ii < indices.Length; ++ii){int idx = indices[ii];Rect box = boxes[idx];Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);}pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}}
}
下载
可运行程序exe下载
源码下载
相关文章:
C# OpenCvSharp DNN FreeYOLO 人脸检测
目录 效果 模型信息 项目 代码 下载 C# OpenCvSharp DNN FreeYOLO 人脸检测 效果 模型信息 Inputs ------------------------- name:input tensor:Float[1, 3, 192, 320] --------------------------------------------------------------- Outp…...
单例九品--第五品
单例九品--第五品 上一品引入写在前边代码部分1代码部分2实现方式评注与思考下一品的设计思考 上一品引入 第四品中可能会因为翻译单元的链接先后顺序,造成静态初始化灾难的问题。造成的原因是因为存在调用单例对象前没有完成定义的问题,这一品将着重解…...
Lwip之TCP服务端示例记录(1对多)
前言 实现多个客户端同时连接初步代码结构已经实现完成(通过轮训的方式) // // Created by shchl on 2024/3/8. // #if 1#include <string.h> #include "lwip/api.h" #include "FreeRTOS.h" #include "task.h" #include "usart.h&…...
哲理:为什么你要学习编程这项技能
有一家饭店的大厨,烧得一手好菜,经过口碑相传,客人从五湖四海闻名而来。然而这对饭店的老板来说,并不单纯是一个好消息。因为客人不是奔着饭店,而是奔着大厨的手艺来的。老板必须想办法留住这位大厨,否则他…...
【机器学习300问】30、准确率的局限性在哪里?
一、什么是准确率? 在解答这个问题之前,我们首先得先回顾一下准确率的定义,准确率是机器学习分类问题中一个很直观的指标,它告诉我们模型正确预测的比例,即 还是用我最喜欢的方式,举例子来解释一下…...
融资项目——网关微服务
1. 网关的路由转发功能 在前后端分离的项目中,网关服务可以将前端的相关请求转发到相应的后端微服务中。 2. 网关微服务的配置 首先需要创建一个网关微服务,并添加依赖。 <!-- 网关 --><dependency><groupId>org.springframework.cl…...
飞驰云联CEO朱旭光荣获“科技领军人才”称号
2024年2月29日,苏州工业园区“优化营商环境暨作风效能建设大会”成功举办,会上公布了2023年度苏州工业园区第十七届第一批金鸡湖科技领军人才名单,Ftrans飞驰云联创始人兼CEO朱旭光先生凭借在数据安全以及文件交换领域取得的突出成果…...
Dockerfile的使用,怎样制作镜像
Docker 提供了一种更便捷的方式,叫作 Dockerfile docker build命令用于根据给定的Dockerfile构建Docker镜像。 docker build命令参数: --build-arg,设置构建时的变量 --no-cache,默认false。设置该选项,将不使用Build …...
外包干了5天,技术退步明显。。。。。
在湖南的一个安静角落,我,一个普通的大专生,开始了我的软件测试之旅。四年的外包生涯,让我在舒适区里逐渐失去了锐气,技术停滞不前,仿佛被时间遗忘。然而,生活的转机总是在不经意间降临。 与女…...
leetcode2834--找出美丽数组的最小和
1. 题意 求一个序列和。序列 a a a满足: 大小为 n n n ∀ 0 ≤ i , j < n , i ≠ j , a i a j ≠ t a r g e t \forall 0\le i,j \lt n,i \ne j,a_ia_j \ne target ∀0≤i,j<n,ij,aiajtarget 找出美丽数组的最小和 2. 题解 贪心的构造这个序列。…...
【NR 定位】3GPP NR Positioning 5G定位标准解读(七)- GNSS定位方法
前言 3GPP NR Positioning 5G定位标准:3GPP TS 38.305 V18 3GPP 标准网址:Directory Listing /ftp/ 【NR 定位】3GPP NR Positioning 5G定位标准解读(一)-CSDN博客 【NR 定位】3GPP NR Positioning 5G定位标准解读(…...
结构体和malloc学习笔记
结构体学习: 为什么会出现结构体: 为了表示一些复杂的数据,而普通的基本类型变量无法满足要求; 定义: 结构体是用户根据实际需要自己定义的符合数类型; 如何使用结构体: //定义结构体 struc…...
Nginx常用命令总结及常见问题排查
连续更新挑战第4天… 目录 常用启停命令Nginx 常见问题Nginx 如何忽略非标准http头检测?Nginx websocket代理Nginx 临时缓存不够导致下载文件失败Nginx 没有临时缓存目录权限导致下载文件失败Nginx非root用户启动无法使用80端口或者报无权限异常路由重写怎么配置?nginx 根据…...
微服务超大Excel文件导出方案优化
1、在导出Excel时经常会碰到文件过大,导出特别慢 2、微服务限制了请求超时时间,文件过大情况必然超时 优化思路: 1、文件过大时通过文件拆分、打包压缩zip,然后上传到oss,并设置有效期(30天过期) 2、把…...
论文阅读之Multimodal Chain-of-Thought Reasoning in Language Models
文章目录 简介摘要引言多模态思维链推理的挑战多模态CoT框架多模态CoT模型架构细节编码模块融合模块解码模块 实验结果总结 简介 本文主要对2023一篇论文《Multimodal Chain-of-Thought Reasoning in Language Models》主要内容进行介绍。 摘要 大型语言模型(LLM…...
灯塔:CSS笔记(2)
一 选择器进阶 后代选择器:空格 作用:根据HTML标签的嵌套关系,,选择父元素 后代中满足条件的元素 选择器语法:选择器1 选择器2{ css } 结果: *在选择器1所找到标签的后代(儿子 孙子 重孙子…...
基于Springboot的志愿服务管理系统(有报告)。Javaee项目,springboot项目。
演示视频: 基于Springboot的志愿服务管理系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构…...
保姆级讲解 Stable Diffusion
目录 本文讲解思路介绍 一、引入 二、Diffusion Model 三、原文的摘要和简介 四、Stable Diffusion 4.1、组成模块 4.2、感知压缩 4.3、条件控制 五、图解 Stable Diffusion 5.1、潜在空间的扩散 5.2、条件控制 5.3、采样 5.4、Diffusion Model 与 Stable Diffusion …...
HTML二识
图片,音频,视频标签 标签描述<img>定义图片<audio>定义音频<video>定义视频 定义图片: src:规定显示图片的URL(统一资源定位符)height:定义图像的高度 单位:px…...
[BUUCTF]-PWN:starctf_2019_babyshell解析(汇编\x00开头绕过+shellcode)
查看保护 查看ida 这里就是要输入shellcode,但是函数会有检测。 在shellcode前面构造一个以\x00机器码开头的汇编指令,这样就可以绕过函数检查了。 完整exp: from pwn import* context(log_leveldebug,archamd64) pprocess(./babyshell)she…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...
pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决
问题: pgsql数据库通过备份数据库文件进行还原时,如果表中有自增序列,还原后可能会出现重复的序列,此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”,…...
P10909 [蓝桥杯 2024 国 B] 立定跳远
# P10909 [蓝桥杯 2024 国 B] 立定跳远 ## 题目描述 在运动会上,小明从数轴的原点开始向正方向立定跳远。项目设置了 $n$ 个检查点 $a_1, a_2, \cdots , a_n$ 且 $a_i \ge a_{i−1} > 0$。小明必须先后跳跃到每个检查点上且只能跳跃到检查点上。同时࿰…...
java+webstock
maven依赖 <dependency><groupId>org.java-websocket</groupId><artifactId>Java-WebSocket</artifactId><version>1.3.5</version></dependency><dependency><groupId>org.apache.tomcat.websocket</groupId&…...
【多线程初阶】单例模式 指令重排序问题
文章目录 1.单例模式1)饿汉模式2)懒汉模式①.单线程版本②.多线程版本 2.分析单例模式里的线程安全问题1)饿汉模式2)懒汉模式懒汉模式是如何出现线程安全问题的 3.解决问题进一步优化加锁导致的执行效率优化预防内存可见性问题 4.解决指令重排序问题 1.单例模式 单例模式确保某…...
