基于华为atlas的unet分割模型探索
Unet模型使用官方基于kaggle Carvana Image Masking Challenge数据集训练的模型。
模型输入为572*572*3,输出为572*572*2。分割目标分别为,0:背景,1:汽车。
Pytorch的pth模型转化onnx模型:
import torchfrom unet import UNetmodel = UNet(n_channels=3, n_classes=2, bilinear=False)
model = model.to(memory_format=torch.channels_last)state_dict = torch.load("unet_carvana_scale1.0_epoch2.pth", map_location="cpu")
#del state_dict['mask_values']
model.load_state_dict(state_dict)dummy_input = torch.randn(1, 3, 572, 572)torch.onnx.export(model, dummy_input, "unet.onnx", verbose=True)

模型输入输出节点分析:


使用工具Netron查看模型结构,确定模型输入节点名称为input.1,输出节点名称为/outc/conv/Conv
onnx模型转化atlas模型:
atc --model=./unet.onnx --framework=5 --output=unet --soc_version=Ascend310P3 --input_shape="input.1:1,3,572,572" --output_type="/outc/conv/Conv:0:FP32" --out_nodes="/outc/conv/Conv:0"
![]()
推理代码实现:
import base64
import json
import os
import timeimport numpy as np
import cv2import MxpiDataType_pb2 as mxpi_data
from StreamManagerApi import InProtobufVector
from StreamManagerApi import MxProtobufIn
from StreamManagerApi import StreamManagerApidef check_dir(dir):if not os.path.exists(dir):os.makedirs(dir, exist_ok=True)class SDKInferWrapper:def __init__(self): # 完成初始化self._stream_name = Noneself._stream_mgr_api = StreamManagerApi()if self._stream_mgr_api.InitManager() != 0:raise RuntimeError("Failed to init stream manager.")pipeline_name = './nested_unet.pipeline'self.load_pipeline(pipeline_name)self.width = 572self.height = 572def load_pipeline(self, pipeline_path):with open(pipeline_path, 'r') as f:pipeline = json.load(f)self._stream_name = list(pipeline.keys())[0].encode() # 'unet_pytorch'if self._stream_mgr_api.CreateMultipleStreams(json.dumps(pipeline).encode()) != 0:raise RuntimeError("Failed to create stream.")def do_infer(self, img_bgr):# preprocessimage = cv2.resize(img_bgr, (self.width, self.height))image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)image = image.astype('float32') / 255.0image = image.transpose(2, 0, 1)tensor_pkg_list = mxpi_data.MxpiTensorPackageList()tensor_pkg = tensor_pkg_list.tensorPackageVec.add()tensor_vec = tensor_pkg.tensorVec.add()tensor_vec.deviceId = 0tensor_vec.memType = 0for dim in [1, *image.shape]:tensor_vec.tensorShape.append(dim) # tensorshape属性为[1,3,572,572]input_data = image.tobytes()tensor_vec.dataStr = input_datatensor_vec.tensorDataSize = len(input_data)protobuf_vec = InProtobufVector()protobuf = MxProtobufIn()protobuf.key = b'appsrc0'protobuf.type = b'MxTools.MxpiTensorPackageList'protobuf.protobuf = tensor_pkg_list.SerializeToString()protobuf_vec.push_back(protobuf)unique_id = self._stream_mgr_api.SendProtobuf(self._stream_name, 0, protobuf_vec)if unique_id < 0:raise RuntimeError("Failed to send data to stream.")infer_result = self._stream_mgr_api.GetResult(self._stream_name, unique_id)if infer_result.errorCode != 0:raise RuntimeError(f"GetResult error. errorCode={infer_result.errorCode}, "f"errorMsg={infer_result.data.decode()}")output_tensor = self._parse_output_data(infer_result)output_tensor = np.squeeze(output_tensor)output_tensor = softmax(output_tensor)mask = np.argmax(output_tensor, axis =0)score = np.max(output_tensor, axis = 0)mask = cv2.resize(mask, [img_bgr.shape[1], img_bgr.shape[0]], interpolation=cv2.INTER_NEAREST)score = cv2.resize(score, [img_bgr.shape[1], img_bgr.shape[0]], interpolation=cv2.INTER_NEAREST)return mask, scoredef _parse_output_data(self, output_data):infer_result_data = json.loads(output_data.data.decode())content = json.loads(infer_result_data['metaData'][0]['content'])tensor_vec = content['tensorPackageVec'][0]['tensorVec'][0]data_str = tensor_vec['dataStr']tensor_shape = tensor_vec['tensorShape']infer_array = np.frombuffer(base64.b64decode(data_str), dtype=np.float32)return infer_array.reshape(tensor_shape)def draw(self, mask):color_lists = [(255, 0, 0), (0, 255, 0), (0, 0, 255)]drawed_img = np.stack([mask, mask, mask], axis = 2)for i in np.unique(mask):drawed_img[:,:,0][drawed_img[:,:,0]==i] = color_lists[i][0]drawed_img[:,:,1][drawed_img[:,:,1]==i] = color_lists[i][1]drawed_img[:,:,2][drawed_img[:,:,2]==i] = color_lists[i][2]return drawed_imgdef softmax(x):exps = np.exp(x - np.max(x))return exps/np.sum(exps)def sigmoid(x):y = x.copy()y[x >= 0] = 1.0 / (1 + np.exp(-x[x >= 0]))y[x < 0] = np.exp(x[x < 0]) / (1 + np.exp(x[x < 0]))return ydef check_dir(dir):if not os.path.exists(dir):os.makedirs(dir, exist_ok=True)def test():dataset_dir = './sample_data'output_folder = "./infer_result" os.makedirs(output_folder, exist_ok=True)sdk_infer = SDKInferWrapper()# read imgimage_name = "./sample_data/images/111.jpg"img_bgr = cv2.imread(image_name)# infert1 = time.time()mask, score = sdk_infer.do_infer(img_bgr)t2 = time.time()print(t2-t1, mask, score)drawed_img = sdk_infer.draw(mask)cv2.imwrite("infer_result/draw.png", drawed_img)if __name__ == "__main__":test()
运行代码:
set -e
. /usr/local/Ascend/ascend-toolkit/set_env.sh
# Simple log helper functions
info() { echo -e "\033[1;34m[INFO ][MxStream] $1\033[1;37m" ; }
warn() { echo >&2 -e "\033[1;31m[WARN ][MxStream] $1\033[1;37m" ; }#export MX_SDK_HOME=/home/work/mxVision
export LD_LIBRARY_PATH=${MX_SDK_HOME}/lib:${MX_SDK_HOME}/opensource/lib:${MX_SDK_HOME}/opensource/lib64:/usr/local/Ascend/ascend-toolkit/latest/acllib/lib64:${LD_LIBRARY_PATH}
export GST_PLUGIN_SCANNER=${MX_SDK_HOME}/opensource/libexec/gstreamer-1.0/gst-plugin-scanner
export GST_PLUGIN_PATH=${MX_SDK_HOME}/opensource/lib/gstreamer-1.0:${MX_SDK_HOME}/lib/plugins#to set PYTHONPATH, import the StreamManagerApi.py
export PYTHONPATH=$PYTHONPATH:${MX_SDK_HOME}/pythonpython3 unet.py
exit 0
运行效果:


![]()
个人思考:
华为atlas的参考案例细节不到位,步骤缺失较多,摸索困难,代码写法较差,信创化道路任重而道远。
参考资料:
GitHub - milesial/Pytorch-UNet: PyTorch implementation of the U-Net for image semantic segmentation with high quality images
https://gitee.com/ascend/samples/tree/master/python/level2_simple_inference/3_segmentation/unet++
相关文章:
基于华为atlas的unet分割模型探索
Unet模型使用官方基于kaggle Carvana Image Masking Challenge数据集训练的模型。 模型输入为572*572*3,输出为572*572*2。分割目标分别为,0:背景,1:汽车。 Pytorch的pth模型转化onnx模型: import torchf…...
机器学习--循环神经网络(RNN)1
一、简介 循环神经网络(Recurrent Neural Network)是深度学习领域中一种非常经典的网络结构,在现实生活中有着广泛的应用。以槽填充(slot filling)为例,如下图所示,假设订票系统听到用户说&…...
基于java+springboot+vue实现的学生信息管理系统(文末源码+Lw+ppt)23-54
摘 要 人类现已进入21世纪,科技日新月异,经济、信息等方面都取得了长足的进步,特别是信息网络技术的飞速发展,对政治、经济、军事、文化等方面都产生了很大的影响。 利用计算机网络的便利,开发一套基于java的大学生…...
【漏洞复现】Linksys E2000 position.js 身份验证绕过漏洞(CVE-2024-27497)
0x01 产品简介 Linksys E2000是一款由思科(Cisco)品牌推出的无线路由器,它是一款支持2.4GHz和5GHz双频段的无线路由器,用户可以避开拥挤的2.4GHz频段,独自享受5GHz频段的高速无线生活。 0x02 漏洞概述 Linksys E200…...
小白跟做江科大51单片机之DS1302可调时钟
原理部分 1.DS1302可调时钟介绍 单片机定时器主要占用CPU时间,掉电不能继续运行 图1 2.原理 图2 内部有寄存器,寄存的时候以时分秒寄存,以通信协议实现数据交互,就可以实现对数据进行访问和读写 3.主要寄存器定义 CE芯片使能…...
2024蓝桥杯每日一题(归并排序)
一、第一题:火柴排队 解题思路:归并排序 重点在于想清楚是对哪个数组进行归并排序求逆序对 【Python程序代码】 from math import * n int(input()) a list(map(int,input().split())) b list(map(int,input().split())) na,nb [],[] for …...
生成对抗网络 (GAN)
生成对抗网络(Generative Adversarial Networks,GAN)是由Ian Goodfellow等人在2014年提出的一种深度学习模型。GAN由两部分组成:一个生成器(Generator)和一个判别器(Discriminator)&…...
QGridLayout网格布局和QVBoxLayout垂直布局有着非常大的差别
QGridLayout网格布局:1.把这块控件划分成一个个的 单元格 2.把你的控件填充进入 单元格 3.这些有关限制大小的函数接口统统失效 setMaximumWidth() setMinimumWidth() setPolicySize()图示:我是用的网格布局,左边放QT…...
HCIA-HarmonyOS设备开发认证V2.0-习题2
目录 习题一习题二坚持就有收获 习题一 # 判断题## 1.PWM占空比指的是低电平时间占周期时间的百分比。(错误)正确(True)错误(False)解题: - PWM占空比指的是高电平时间占周期时间的百分比## 2.UART是通用异步收发传输器,是通用串行数据总线,…...
【npm】前端工程项目配置文件package.json详解
简言 详细介绍了package.json中每个字段的作用。 package.json 本文档将为您介绍 package.json 文件的所有要求。它必须是实际的 JSON,而不仅仅是 JavaScript 对象文字。 如果你要发布你的项目,这是一个特别重要的文件,其中name和version是…...
Python快速入门系列-2(Python的安装与环境设置)
第二章:Python的安装与环境设置 2.1 Python的下载与安装2.1.1 访问Python官网2.1.2 安装Python对于Windows用户对于macOS用户对于Linux用户 2.2 集成开发环境(IDE)的选择与设置2.2.1 PyCharm2.2.2 Visual Studio Code2.2.3 Jupyter Notebook2…...
Linux的环境安装以及项目部署
LInux软件安装 是在发行版是CentOS下安装 通常使用yum安装,可以在rpm上增加了自动解决依赖的功能 传输安装包方式安装JDK与tomcat 安装JDK ●安装包:将.gz文件通过Xftp传输到/opt目录下准备安装 ●解压:进入/opt目录,使用命令tar -zxvf 压缩包名称 (名称…...
ASUS华硕天选2锐龙版笔记本电脑FA506ICB/FA706IC原装出厂Windows11系统,预装OEM系统恢复安装开箱状态
链接:https://pan.baidu.com/s/122iHHEOtNUu4azhVPnxNuA?pwdsqk7 提取码:sqk7 适用型号: FA506IM、FA506IE、FA506IC、FA506IHR FA506IR、FA506IHRB、FA506ICB、FA506IEB FA706IM、FA706IE、FA706IC、FA706IHR FA706IR、FA706IHRB、F…...
登录校验认证
会话技术 会话:用户打开浏览器,访问web服务器的资源,会话建立,直到有一方断开连接,会话结束。在一次会话中可以包含多次请求和响应。 会话跟踪: 一种维护浏览器状态的方法,服务器需要识别多次请…...
Kubernetes 几大概念的作用
更详细的组件通信流程 Kubernetes 主要由以下几个核心组件组成: 1. etcd 保存了整个集群的状态; 2. API Server 提供了资源操作的唯一入口,并提供认证,授权,访问控制,API 注册和发现等机制; …...
力扣199. 二叉树的右视图(DFS,BFS)
Problem: 199. 二叉树的右视图 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 无论是DFS还是BFS我们都要思考到达二叉树的每一层(或者每一层中的每一个节点)时,我们都该如何按题目要求做出对应得处理!!!在本体中我们主要是&#x…...
[数据集][目标检测]光伏板太阳能版缺陷检测数据集VOC+YOLO格式2400张3类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2400 标注数量(xml文件个数):2400 标注数量(txt文件个数):2400 标注…...
根据QQ号获取暗恋的人的全部歌单
文章目录 前言一、成果展示二、后端开发流程三、前后端障碍与难点解决四、待扩展内容五、总结 前言 本人喜欢使用QQ音乐听歌,并且喜欢点击好友栏目观看最近在听,了解暗恋的人最近在听什么歌曲,知己知彼,百战不殆。但是每次都需要…...
解决火狐浏览器访问地址受限制问题(This address is restricted)
问题如下图: This address is restrictedThis address uses a network port which is normally used for purposes other than Web browsing. Firefox has canceled the request for your protection. 此地址受到限制 此地址使用通常用于 Web 浏览以外的目的的网…...
基于MPPT的太阳能光伏电池simulink性能仿真,对比扰动观察法,增量电导法,恒定电压法
目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 扰动观察法 (Perturb and Observe Method) 4.2 增量电导法 (Incremental Conductance Method) 4.3 恒定电压法 (Constant Voltage Method) 5.完整工程文件 1.课题概述 在simulink中,实…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
