当前位置: 首页 > news >正文

基于华为atlas的unet分割模型探索

Unet模型使用官方基于kaggle Carvana Image Masking Challenge数据集训练的模型。

模型输入为572*572*3,输出为572*572*2。分割目标分别为,0:背景,1:汽车。

Pytorch的pth模型转化onnx模型:

import torchfrom unet import UNetmodel = UNet(n_channels=3, n_classes=2, bilinear=False)
model = model.to(memory_format=torch.channels_last)state_dict = torch.load("unet_carvana_scale1.0_epoch2.pth", map_location="cpu")
#del state_dict['mask_values']
model.load_state_dict(state_dict)dummy_input = torch.randn(1, 3, 572, 572)torch.onnx.export(model, dummy_input, "unet.onnx", verbose=True)

模型输入输出节点分析:

使用工具Netron查看模型结构,确定模型输入节点名称为input.1,输出节点名称为/outc/conv/Conv

onnx模型转化atlas模型:

atc --model=./unet.onnx --framework=5 --output=unet --soc_version=Ascend310P3  --input_shape="input.1:1,3,572,572" --output_type="/outc/conv/Conv:0:FP32" --out_nodes="/outc/conv/Conv:0"

推理代码实现:

import base64
import json
import os
import timeimport numpy as np
import cv2import MxpiDataType_pb2 as mxpi_data
from StreamManagerApi import InProtobufVector
from StreamManagerApi import MxProtobufIn
from StreamManagerApi import StreamManagerApidef check_dir(dir):if not os.path.exists(dir):os.makedirs(dir, exist_ok=True)class SDKInferWrapper:def __init__(self): # 完成初始化self._stream_name = Noneself._stream_mgr_api = StreamManagerApi()if self._stream_mgr_api.InitManager() != 0:raise RuntimeError("Failed to init stream manager.")pipeline_name = './nested_unet.pipeline'self.load_pipeline(pipeline_name)self.width = 572self.height = 572def load_pipeline(self, pipeline_path):with open(pipeline_path, 'r') as f:pipeline = json.load(f)self._stream_name = list(pipeline.keys())[0].encode() # 'unet_pytorch'if self._stream_mgr_api.CreateMultipleStreams(json.dumps(pipeline).encode()) != 0:raise RuntimeError("Failed to create stream.")def do_infer(self, img_bgr):# preprocessimage = cv2.resize(img_bgr, (self.width, self.height))image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)image = image.astype('float32') / 255.0image = image.transpose(2, 0, 1)tensor_pkg_list = mxpi_data.MxpiTensorPackageList()tensor_pkg = tensor_pkg_list.tensorPackageVec.add()tensor_vec = tensor_pkg.tensorVec.add()tensor_vec.deviceId = 0tensor_vec.memType = 0for dim in [1, *image.shape]:tensor_vec.tensorShape.append(dim) # tensorshape属性为[1,3,572,572]input_data = image.tobytes()tensor_vec.dataStr = input_datatensor_vec.tensorDataSize = len(input_data)protobuf_vec = InProtobufVector()protobuf = MxProtobufIn()protobuf.key = b'appsrc0'protobuf.type = b'MxTools.MxpiTensorPackageList'protobuf.protobuf = tensor_pkg_list.SerializeToString()protobuf_vec.push_back(protobuf)unique_id = self._stream_mgr_api.SendProtobuf(self._stream_name, 0, protobuf_vec)if unique_id < 0:raise RuntimeError("Failed to send data to stream.")infer_result = self._stream_mgr_api.GetResult(self._stream_name, unique_id)if infer_result.errorCode != 0:raise RuntimeError(f"GetResult error. errorCode={infer_result.errorCode}, "f"errorMsg={infer_result.data.decode()}")output_tensor = self._parse_output_data(infer_result)output_tensor = np.squeeze(output_tensor)output_tensor = softmax(output_tensor)mask = np.argmax(output_tensor, axis =0)score = np.max(output_tensor, axis = 0)mask = cv2.resize(mask, [img_bgr.shape[1], img_bgr.shape[0]], interpolation=cv2.INTER_NEAREST)score = cv2.resize(score, [img_bgr.shape[1], img_bgr.shape[0]], interpolation=cv2.INTER_NEAREST)return mask, scoredef _parse_output_data(self, output_data):infer_result_data = json.loads(output_data.data.decode())content = json.loads(infer_result_data['metaData'][0]['content'])tensor_vec = content['tensorPackageVec'][0]['tensorVec'][0]data_str = tensor_vec['dataStr']tensor_shape = tensor_vec['tensorShape']infer_array = np.frombuffer(base64.b64decode(data_str), dtype=np.float32)return infer_array.reshape(tensor_shape)def draw(self, mask):color_lists = [(255, 0, 0), (0, 255, 0), (0, 0, 255)]drawed_img = np.stack([mask, mask, mask], axis = 2)for i in np.unique(mask):drawed_img[:,:,0][drawed_img[:,:,0]==i] = color_lists[i][0]drawed_img[:,:,1][drawed_img[:,:,1]==i] = color_lists[i][1]drawed_img[:,:,2][drawed_img[:,:,2]==i] = color_lists[i][2]return drawed_imgdef softmax(x):exps = np.exp(x - np.max(x))return exps/np.sum(exps)def sigmoid(x):y = x.copy()y[x >= 0] = 1.0 / (1 + np.exp(-x[x >= 0]))y[x < 0] = np.exp(x[x < 0]) / (1 + np.exp(x[x < 0]))return ydef check_dir(dir):if not os.path.exists(dir):os.makedirs(dir, exist_ok=True)def test():dataset_dir = './sample_data'output_folder = "./infer_result"   os.makedirs(output_folder, exist_ok=True)sdk_infer = SDKInferWrapper()# read imgimage_name = "./sample_data/images/111.jpg"img_bgr = cv2.imread(image_name)# infert1 = time.time()mask, score = sdk_infer.do_infer(img_bgr)t2 = time.time()print(t2-t1, mask, score)drawed_img = sdk_infer.draw(mask)cv2.imwrite("infer_result/draw.png", drawed_img)if __name__ == "__main__":test()

运行代码:

set -e
. /usr/local/Ascend/ascend-toolkit/set_env.sh
# Simple log helper functions
info() { echo -e "\033[1;34m[INFO ][MxStream] $1\033[1;37m" ; }
warn() { echo >&2 -e "\033[1;31m[WARN ][MxStream] $1\033[1;37m" ; }#export MX_SDK_HOME=/home/work/mxVision
export LD_LIBRARY_PATH=${MX_SDK_HOME}/lib:${MX_SDK_HOME}/opensource/lib:${MX_SDK_HOME}/opensource/lib64:/usr/local/Ascend/ascend-toolkit/latest/acllib/lib64:${LD_LIBRARY_PATH}
export GST_PLUGIN_SCANNER=${MX_SDK_HOME}/opensource/libexec/gstreamer-1.0/gst-plugin-scanner
export GST_PLUGIN_PATH=${MX_SDK_HOME}/opensource/lib/gstreamer-1.0:${MX_SDK_HOME}/lib/plugins#to set PYTHONPATH, import the StreamManagerApi.py
export PYTHONPATH=$PYTHONPATH:${MX_SDK_HOME}/pythonpython3 unet.py
exit 0

运行效果:

个人思考:

华为atlas的参考案例细节不到位,步骤缺失较多,摸索困难,代码写法较差,信创化道路任重而道远。

参考资料:

GitHub - milesial/Pytorch-UNet: PyTorch implementation of the U-Net for image semantic segmentation with high quality images

https://gitee.com/ascend/samples/tree/master/python/level2_simple_inference/3_segmentation/unet++

相关文章:

基于华为atlas的unet分割模型探索

Unet模型使用官方基于kaggle Carvana Image Masking Challenge数据集训练的模型。 模型输入为572*572*3&#xff0c;输出为572*572*2。分割目标分别为&#xff0c;0&#xff1a;背景&#xff0c;1&#xff1a;汽车。 Pytorch的pth模型转化onnx模型&#xff1a; import torchf…...

机器学习--循环神经网络(RNN)1

一、简介 循环神经网络&#xff08;Recurrent Neural Network&#xff09;是深度学习领域中一种非常经典的网络结构&#xff0c;在现实生活中有着广泛的应用。以槽填充&#xff08;slot filling&#xff09;为例&#xff0c;如下图所示&#xff0c;假设订票系统听到用户说&…...

基于java+springboot+vue实现的学生信息管理系统(文末源码+Lw+ppt)23-54

摘 要 人类现已进入21世纪&#xff0c;科技日新月异&#xff0c;经济、信息等方面都取得了长足的进步&#xff0c;特别是信息网络技术的飞速发展&#xff0c;对政治、经济、军事、文化等方面都产生了很大的影响。 利用计算机网络的便利&#xff0c;开发一套基于java的大学生…...

【漏洞复现】Linksys E2000 position.js 身份验证绕过漏洞(CVE-2024-27497)

0x01 产品简介 Linksys E2000是一款由思科&#xff08;Cisco&#xff09;品牌推出的无线路由器&#xff0c;它是一款支持2.4GHz和5GHz双频段的无线路由器&#xff0c;用户可以避开拥挤的2.4GHz频段&#xff0c;独自享受5GHz频段的高速无线生活。 0x02 漏洞概述 Linksys E200…...

小白跟做江科大51单片机之DS1302可调时钟

原理部分 1.DS1302可调时钟介绍 单片机定时器主要占用CPU时间&#xff0c;掉电不能继续运行 图1 2.原理 图2 内部有寄存器&#xff0c;寄存的时候以时分秒寄存&#xff0c;以通信协议实现数据交互&#xff0c;就可以实现对数据进行访问和读写 3.主要寄存器定义 CE芯片使能…...

2024蓝桥杯每日一题(归并排序)

一、第一题&#xff1a;火柴排队 解题思路&#xff1a;归并排序 重点在于想清楚是对哪个数组进行归并排序求逆序对 【Python程序代码】 from math import * n int(input()) a list(map(int,input().split())) b list(map(int,input().split())) na,nb [],[] for …...

生成对抗网络 (GAN)

生成对抗网络&#xff08;Generative Adversarial Networks&#xff0c;GAN&#xff09;是由Ian Goodfellow等人在2014年提出的一种深度学习模型。GAN由两部分组成&#xff1a;一个生成器&#xff08;Generator&#xff09;和一个判别器&#xff08;Discriminator&#xff09;&…...

QGridLayout网格布局和QVBoxLayout垂直布局有着非常大的差别

QGridLayout网格布局&#xff1a;1.把这块控件划分成一个个的 单元格 2.把你的控件填充进入 单元格 3.这些有关限制大小的函数接口统统失效 setMaximumWidth&#xff08;&#xff09; setMinimumWidth() setPolicySize()图示&#xff1a;我是用的网格布局&#xff0c;左边放QT…...

HCIA-HarmonyOS设备开发认证V2.0-习题2

目录 习题一习题二坚持就有收获 习题一 # 判断题## 1.PWM占空比指的是低电平时间占周期时间的百分比。(错误)正确(True)错误(False)解题&#xff1a; - PWM占空比指的是高电平时间占周期时间的百分比## 2.UART是通用异步收发传输器&#xff0c;是通用串行数据总线&#xff0c;…...

【npm】前端工程项目配置文件package.json详解

简言 详细介绍了package.json中每个字段的作用。 package.json 本文档将为您介绍 package.json 文件的所有要求。它必须是实际的 JSON&#xff0c;而不仅仅是 JavaScript 对象文字。 如果你要发布你的项目&#xff0c;这是一个特别重要的文件&#xff0c;其中name和version是…...

Python快速入门系列-2(Python的安装与环境设置)

第二章&#xff1a;Python的安装与环境设置 2.1 Python的下载与安装2.1.1 访问Python官网2.1.2 安装Python对于Windows用户对于macOS用户对于Linux用户 2.2 集成开发环境&#xff08;IDE&#xff09;的选择与设置2.2.1 PyCharm2.2.2 Visual Studio Code2.2.3 Jupyter Notebook2…...

Linux的环境安装以及项目部署

LInux软件安装 是在发行版是CentOS下安装 通常使用yum安装,可以在rpm上增加了自动解决依赖的功能 传输安装包方式安装JDK与tomcat 安装JDK ●安装包&#xff1a;将.gz文件通过Xftp传输到/opt目录下准备安装 ●解压&#xff1a;进入/opt目录,使用命令tar -zxvf 压缩包名称 (名称…...

ASUS华硕天选2锐龙版笔记本电脑FA506ICB/FA706IC原装出厂Windows11系统,预装OEM系统恢复安装开箱状态

链接&#xff1a;https://pan.baidu.com/s/122iHHEOtNUu4azhVPnxNuA?pwdsqk7 提取码&#xff1a;sqk7 适用型号&#xff1a; FA506IM、FA506IE、FA506IC、FA506IHR FA506IR、FA506IHRB、FA506ICB、FA506IEB FA706IM、FA706IE、FA706IC、FA706IHR FA706IR、FA706IHRB、F…...

登录校验认证

会话技术 会话&#xff1a;用户打开浏览器&#xff0c;访问web服务器的资源&#xff0c;会话建立&#xff0c;直到有一方断开连接&#xff0c;会话结束。在一次会话中可以包含多次请求和响应。 会话跟踪&#xff1a; 一种维护浏览器状态的方法&#xff0c;服务器需要识别多次请…...

Kubernetes 几大概念的作用

更详细的组件通信流程 Kubernetes 主要由以下几个核心组件组成&#xff1a; 1. etcd 保存了整个集群的状态&#xff1b; 2. API Server 提供了资源操作的唯一入口&#xff0c;并提供认证&#xff0c;授权&#xff0c;访问控制&#xff0c;API 注册和发现等机制&#xff1b; …...

力扣199. 二叉树的右视图(DFS,BFS)

Problem: 199. 二叉树的右视图 文章目录 题目描述思路解题方法复杂度Code 题目描述 思路 无论是DFS还是BFS我们都要思考到达二叉树的每一层&#xff08;或者每一层中的每一个节点&#xff09;时&#xff0c;我们都该如何按题目要求做出对应得处理!!!在本体中我们主要是&#x…...

[数据集][目标检测]光伏板太阳能版缺陷检测数据集VOC+YOLO格式2400张3类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;2400 标注数量(xml文件个数)&#xff1a;2400 标注数量(txt文件个数)&#xff1a;2400 标注…...

根据QQ号获取暗恋的人的全部歌单

文章目录 前言一、成果展示二、后端开发流程三、前后端障碍与难点解决四、待扩展内容五、总结 前言 本人喜欢使用QQ音乐听歌&#xff0c;并且喜欢点击好友栏目观看最近在听&#xff0c;了解暗恋的人最近在听什么歌曲&#xff0c;知己知彼&#xff0c;百战不殆。但是每次都需要…...

解决火狐浏览器访问地址受限制问题(This address is restricted)

问题如下图&#xff1a; This address is restrictedThis address uses a network port which is normally used for purposes other than Web browsing. Firefox has canceled the request for your protection. 此地址受到限制 此地址使用通常用于 Web 浏览以外的目的的网…...

基于MPPT的太阳能光伏电池simulink性能仿真,对比扰动观察法,增量电导法,恒定电压法

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 4.1 扰动观察法 (Perturb and Observe Method) 4.2 增量电导法 (Incremental Conductance Method) 4.3 恒定电压法 (Constant Voltage Method) 5.完整工程文件 1.课题概述 在simulink中&#xff0c;实…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...