当前位置: 首页 > news >正文

【DataWhale学习】用免费GPU线上跑StableDiffusion项目实践

用免费GPU线上跑SD项目实践

​ DataWhale组织了一个线上白嫖GPU跑chatGLM与SD的项目活动,我很感兴趣就参加啦。之前就对chatGLM有所耳闻,是去年清华联合发布的开源大语言模型,可以用来打造个人知识库什么的,一直没有尝试。而SD我前两天刚跟着B站秋叶大佬和Nenly大佬的视频学习过,但是生成某些图片显存吃紧,想线上部署尝试一下。

参考:DataWhale 学习手册链接

1 学习简介

本文以趋动云平台为例,详细介绍下如何通过平台提供的在线开发环境,直接在云端编写、运行代码,并使用GPU资源进行加速。本教程将学习云算力资源的使用方式,并给出了两个AI项目实践:

  • 用免费GPU创建属于自己的聊天GPT
  • 用免费GPU部署自己的stable-diffusion

平台注册:

  • 注册即送168元算力金
  • Datawhale专属注册链接:https://growthdata.virtaicloud.com/t/SA

适用人群

  • 新手开发者、快速原型设计者;
  • 需要协作和分享的团队;
  • 对大模型部署感兴趣的人;
  • 深度学习入门学习者;
  • 对使用GPU资源有需求的人。

优势:

无需进行本地环境配置,简单易用,便于分享和协作。

组织方:Datawhale x 趋动云

3 云端部署StableDiffusion模型

3.1 项目配置

  1. 创建项目

    在趋动云用户工作台中,点击 快速创建 ,选择 创建项目,创建新项目。

  2. 镜像配置

    选择 趋动云小助手AUTOMATIC1111/stable-diffusion-webui 镜像。

    image-20240311172651842

  3. 数据集配置

    公开 数据集中,选择 stable-diffusion-models 数据集。

    1710149308792

    配置完成后,点击创建,要求上传代码时,选择 暂不上传

  4. 初始化开发环境

    找到最右侧 “开发”-> “初始化开发环境实例”,我这里没按教程配置,因为SD生图需要较大显存,我选择了拥有24G显存的 B1.large,其他按教程一样,并设置了24h的最长运行时间。

    image-20240311173442914

3.2 环境配置

​ 因为数据集代码有所变化,所以教程中有些步骤可以省略,以下为具体步骤。

  1. 解压代码及模型

    tar xf /gemini/data-1/stable-diffusion-webui.tar -C /gemini/code/ 
    
  2. 拷贝frpc内网穿透文件

    chmod +x /root/miniconda3/lib/python3.10/sitepackages/gradio/frpc_linux_amd64_v0.2
    
  3. 拷贝模型文件到项目目录下

    cp /gemini/data-1/v1-5-pruned-emaonly.safetensors /gemini/code/stable-diffusion-webui/
    
  4. 更新系统httpx依赖

    pip install httpx==0.24.1
    
  5. 运行项目

    cd /gemini/code/stable-diffusion-webui && python launch.py --deepdanbooru --share --xformers --listen
    

    运行项目后,点击右侧添加,创建 外部访问链接

    1710149802068

  6. 访问StableDiffusion的WebUI

    复制外部访问链接,在浏览器粘贴并访问,就成功打开WebUI界面啦。

    1710149919322

  7. 生成镜像

    点击右上角 将当前环境制作为镜像,点击 智能生成,在 AUTOMATIC1111/stable-diffusion-webui 基础镜像下生成,点击 构建,完成对镜像的构建。

    image-20240311175121573

    之后安装上一章的步骤,将镜像配置到你的项目里就好啦。

配置好环境后,再次访问,在终端输入以下指令直接运行 WebUI 。

cd /gemini/code/stable-diffusion-webui && python launch.py --deepdanbooru --share --xformers --listen

3.3 StableDiffusion 使用

  1. 生成第一张美图

    部署好了当然是要生成一张图,我选择生成一张猫猫图,结果如下。

    image-20240312104308881

    ​ 库自带的模型是 v1-5-pruned-emaonly 模型,这个模型是官方的1.5 版本预训练模型,是在512*512的小尺寸图像上训练的,所以说如果图像尺寸超过1000的话,容易出现多头多人的情况。

    ​ 在这里我选择的参数与提示词如下:

    • 提示词(prompt)

      1 cat
      
    • 负面提示词(Negative prompt)

      out of frame,(worst quality, low quality, normal quality:2),text,bad eyes,weird eyes closed eyes,badhandv4:0.8,OverallDetail,render,bad quality,worst quality,signature,watermark,extra limbs,
      
    • 迭代步数(Steps)采样器(Sampler)提示词相关性(CFG scale)

      Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, 
      
    • 随机种子(Seed)图像尺寸(Size)模型(Model)

      Seed: 3052626755, Size: 384x512, Model hash: 6ce0161689, Model: v1-5-pruned-emaonly, Version: v1.6.0
      

    生成的猫猫图如下:

    img

  2. 批量生成

    我想要更多的猫猫图,于是增大了生成的 Batch CountBatch size,生成结果如下。

    image-20240312111137432

    可以看到一下生成了16张猫猫图,它实际上是分了两批,每批生成8张,这样生成的。Batch count 控制了生成批次的数量,Batch size 控制每批生成图片的数量。Batch size 越大对显卡显存要求越高,当然白嫖的24g显存不在话下了。

    img

    可以看到生成的图像各有千秋,甚至有的生成了个房子(太离谱了),所以选择合适的种子很重要。可以通过批量生成找到自己喜欢的图像风格的种子,固定下来进行进一步操作。

    我很喜欢第四张,大脸狸花猫,于是点开图片,可以在图片下方看到种子号 2617670965

    image-20240312112233897

  3. 图像放大

    我想放大刚才选中的大脸狸花猫图,可以通过固定种子,并通过 Hires fix 的方法放大生成图像。

    我想使用一个名为 R-ESRGAN4x 的放大算法,从云平台下载太慢了,选择从 该github链接 本地下载,并放在/gemini/code/stable-diffusion-webui/models/RealESRGAN/RealESRGAN_x4plus.pth路径下。

    设置以下参数,重新生成,结果如下。

    image-20240312113245064

    成功将图像尺寸放大到原来的两倍,即 768*1024 的尺寸。图像参数如下:

    1 cat
    Negative prompt: out of frame,(worst quality, low quality, normal quality:2),text,bad eyes,weird eyes closed eyes,badhandv4:0.8,OverallDetail,render,bad quality,worst quality,signature,watermark,extra limbs,
    Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 2617670965, Size: 384x512, Model hash: 6ce0161689, Model: v1-5-pruned-emaonly, Denoising strength: 0.35, Hires upscale: 2, Hires upscaler: R-ESRGAN 4x+, Version: v1.6.0
    

    猫猫图如下:

    00019-2617670965

    效果还不错,不过我还想让他更清晰一点,于是选择让他放大4倍,结果如下。

    img

    可以看到,真的清晰了不少。

  4. 图生图

    图生图就是以给的图片为基准,生成其他的图片,我就像用刚才生成的猫猫图,来生成一个宇宙的星系,于是写了以下的提示词。

    stars,out space,galaxy,
    

    负面提示词不变,分两个批次生成16张星系图片,结果如下。

    image-20240312123732068

    可以看到,生成了具有猫猫形状的星系图案,我从中挑了一张最喜欢的,就是下面这张。

    img

    图片参数如下:

    stars,out space,galaxy,
    Negative prompt: out of frame,(worst quality, low quality, normal quality:2),text,bad eyes,weird eyes closed eyes,badhandv4:0.8,OverallDetail,render,bad quality,worst quality,signature,watermark,extra limbs,
    Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 3, Seed: 3318537879, Size: 768x1024, Model hash: 6ce0161689, Model: v1-5-pruned-emaonly, Denoising strength: 0.7, Version: v1.6.0
    

    以上就尝试玩SD的基本功能啦,之后可以再玩一些进阶玩法,用更厉害的模型,添加lora、ControlNet等插件,生成更可控好看的图片。

相关文章:

【DataWhale学习】用免费GPU线上跑StableDiffusion项目实践

用免费GPU线上跑SD项目实践 ​ DataWhale组织了一个线上白嫖GPU跑chatGLM与SD的项目活动,我很感兴趣就参加啦。之前就对chatGLM有所耳闻,是去年清华联合发布的开源大语言模型,可以用来打造个人知识库什么的,一直没有尝试。而SD我…...

基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的铁轨缺陷检测系统(Python+PySide6界面+训练代码)

摘要:开发铁轨缺陷检测系统对于物流行业、制造业具有重要作用。本篇博客详细介绍了如何运用深度学习构建一个铁轨缺陷检测系统,并提供了完整的实现代码。该系统基于强大的YOLOv8算法,并对比了YOLOv7、YOLOv6、YOLOv5,展示了不同模…...

3.基础算法之搜索与图论

1.深度优先搜索 深度优先搜索(DFS,Depth First Search)是一种用于遍历或搜索树或图的算法。它将当前状态按照一定的规则顺序,先拓展一步得到一个新状态,再对这个新状态递归拓展下去。如果无法拓展,则退回…...

Java模板方法模式源码剖析及使用场景

一、原理与通俗理解 模板方法模式定义了一个算法的骨架,将某些步骤推迟到子类中实现。模板方法定义一个算法的骨架,将一些步骤的实现延迟到子类中完成。这样做的目的是确保算法的结构保持不变,同时又可以为不同的子类提供特定步骤的实现。 比如去餐馆吃饭,餐馆有固定的流程(下…...

c++ 新的函数声明语法

右值引用(&&) 右值引用(&&)允许我们定义接受临时对象或移动语义的函数。 void foo(int&& x); // 右值引用参数默认参数 允许在函数声明中指定参数的默认值。 void bar(int x, double y 3.14); // 带有默认参数的函数声明noexcept关键字 指示函数…...

一款好用的AI工具——边界AICHAT

目录 一、简介二、注册及登录三、主要功能介绍3.1、模型介绍3.2、对话模型历史记录3.3、创作中心3.4、AI绘画SD3.5、文生图3.6、图生图3.7、线稿生图3.8、艺术二维码3.9、秀图广场3.10、AI绘画创作人像辅助器 一、简介 人工智能(AI)是一门研究、开发用于…...

谷歌承认“窃取”OpenAI模型关键信息

什么?谷歌成功偷家OpenAI,还窃取到了gpt-3.5-turbo关键信息??? 是的,你没看错。 根据谷歌自己的说法,它不仅还原了OpenAI大模型的整个投影矩阵(projection matrix)&…...

蓝桥杯(3.10)

1219. 移动距离 import java.util.Scanner; public class Main{public static void main(String[] args) {Scanner sc new Scanner(System.in);int w sc.nextInt();int m sc.nextInt();int n sc.nextInt();m--;n--;//由从1开始变为从0开始//求行号int x1 m/w, x2 n/w;//…...

Hololens 2应用开发系列(3)——MRTK基础知识及配置文件配置(中)

Hololens 2应用开发系列(3)——MRTK基础知识及配置文件配置(中) 一、前言二、输入系统2.1 MRTK输入系统介绍2.2 输入数据提供者(Input Data Providers)2.3 输入动作(Input Actions)2…...

吴恩达深度学习笔记:深度学习引言1.1-1.5

目录 第一门课:神经网络和深度学习 (Neural Networks and Deep Learning)第一周:深度学习引言(Introduction to Deep Learning)1.1 欢迎(Welcome)1.2 什么是神经网络?(What is a Neural Network)1.3 神经网络的监督学习(Supervised Learning …...

【Hadoop大数据技术】——Hadoop概述与搭建环境(学习笔记)

📖 前言:随着大数据时代的到来,大数据已经在金融、交通、物流等各个行业领域得到广泛应用。而Hadoop就是一个用于处理海量数据的框架,它既可以为海量数据提供可靠的存储;也可以为海量数据提供高效的处理。 目录 &#…...

蓝桥杯2023年第十四届省赛真题-工作时长

文件数据 把数据复制到excel中 数据按照增序排序 选中列数据,设置单元格格式,选择下述格式。注意,因为求和之后总小时数可能会超过24小时,所以不要选择最前面是hh的 设置B2 A2 - A1, B4 A4 - A3;然后选中已经算出…...

nginx禁止国外ip访问

1.安装geoip2扩展依赖 yum install libmaxminddb-devel -y 2.下载ngx_http_geoip2_module模块 https://github.com/leev/ngx_http_geoip2_module.git 3.编译安装 ./configure --add-module/datasdb/ngx_http_geoip2_module-3.4 4.下载最新数据库文件 模块安装成功后,还要…...

《腾讯音乐》24校招Java后端一面面经

1.手写LRU 2.项目拷打 3.Https客户端校验证书的细节? 4.对称加密和非对称加密的区别?你分别了解哪些算法? 5.在信息传输过程中,Https用的是对称加密还是非对称加密? 6.怎么防止下载的文件被劫持和篡改? 7.H…...

JavaScript:ES至今发展史简说

ECMAScript(简称ES)是JavaScript的标准,它的发展史经历了多个版本的迭代,以下是主要里程碑: ES1 (1997年6月):首个正式发布的ECMAScript标准,基于当时的JavaScript(由Netscape公司开…...

Linux:进程

进程 知识铺垫冯诺依曼体系结构操作系统(OS) 进程概念进程的查看ps 命令获取进程 pid文件内查看进程终止进程的方式kill命令快捷键 进程的创建 forkfork 返回值问题 进程状态运行状态 :R休眠状态:S (可中断&#xff09…...

【Vue3】defineExpose 实践

【Vue3】defineExpose 实践 defineExpose 是 Vue 3 的 <script setup> 语法糖中提供的一个函数&#xff0c;用于显式地暴露组件的属性、方法或其他响应式状态给其父组件或外部使用。这是在使用 <script setup> 语法时&#xff0c;控制组件公开哪些内部状态和方法的…...

centos7.9安装nacos

centos7.9安装nacos2.3.1 在centos x86_64环境安装nacos2.31环境准备 jdk1.8 、 mysql、 nacos 在window11环境安装nacos2.31 在centos x86_64环境安装nacos2.31 环境准备 jdk1.8 、 mysql、 nacos Nacos 依赖 Java 环境来运行。我们通过下载编译后压缩包方式安装。 重点踩坑…...

ARM/Linux嵌入式面经(四):浙江大华

大华一面 嵌入式 主要是问的项目相关 标准的十五分钟 电话面 这个面试官主要问项目,我同门面的全问八股,可能面试官不一样吧 文章目录 UART串口通信的波特率,常用波特率有哪些串口通信校验方式是什么,有什么区别方便简单的奇偶校验偶校验(even parity)累加和校验CRC循环冗…...

ubuntu 18.04安装教程(详细有效)

文章目录 一、下载ubuntu 18.04镜像二、安装ubuntu1. 点击下载好的Vmware Workstation&#xff0c;点击新建虚拟机&#xff0c;选择 “自定义(高级)”&#xff0c;之后下一步。2. 默认配置&#xff0c;不需要更改&#xff0c;点击下一步。3. 选择 “安装程序光盘映像文件(iso)(…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...