【DataWhale学习】用免费GPU线上跑StableDiffusion项目实践
用免费GPU线上跑SD项目实践
DataWhale组织了一个线上白嫖GPU跑chatGLM与SD的项目活动,我很感兴趣就参加啦。之前就对chatGLM有所耳闻,是去年清华联合发布的开源大语言模型,可以用来打造个人知识库什么的,一直没有尝试。而SD我前两天刚跟着B站秋叶大佬和Nenly大佬的视频学习过,但是生成某些图片显存吃紧,想线上部署尝试一下。
参考:DataWhale 学习手册链接
1 学习简介
本文以趋动云平台为例,详细介绍下如何通过平台提供的在线开发环境,直接在云端编写、运行代码,并使用GPU资源进行加速。本教程将学习云算力资源的使用方式,并给出了两个AI项目实践:
- 用免费GPU创建属于自己的聊天GPT
- 用免费GPU部署自己的stable-diffusion
平台注册:
- 注册即送168元算力金
- Datawhale专属注册链接:https://growthdata.virtaicloud.com/t/SA
适用人群:
- 新手开发者、快速原型设计者;
- 需要协作和分享的团队;
- 对大模型部署感兴趣的人;
- 深度学习入门学习者;
- 对使用GPU资源有需求的人。
优势:
无需进行本地环境配置,简单易用,便于分享和协作。
组织方:Datawhale x 趋动云
3 云端部署StableDiffusion模型
3.1 项目配置
-
创建项目
在趋动云用户工作台中,点击 快速创建 ,选择 创建项目,创建新项目。
-
镜像配置
选择 趋动云小助手 的
AUTOMATIC1111/stable-diffusion-webui镜像。
-
数据集配置
在 公开 数据集中,选择
stable-diffusion-models数据集。
配置完成后,点击创建,要求上传代码时,选择 暂不上传 。
-
初始化开发环境
找到最右侧 “开发”-> “初始化开发环境实例”,我这里没按教程配置,因为SD生图需要较大显存,我选择了拥有24G显存的 B1.large,其他按教程一样,并设置了24h的最长运行时间。

3.2 环境配置
因为数据集代码有所变化,所以教程中有些步骤可以省略,以下为具体步骤。
-
解压代码及模型
tar xf /gemini/data-1/stable-diffusion-webui.tar -C /gemini/code/ -
拷贝frpc内网穿透文件
chmod +x /root/miniconda3/lib/python3.10/sitepackages/gradio/frpc_linux_amd64_v0.2 -
拷贝模型文件到项目目录下
cp /gemini/data-1/v1-5-pruned-emaonly.safetensors /gemini/code/stable-diffusion-webui/ -
更新系统httpx依赖
pip install httpx==0.24.1 -
运行项目
cd /gemini/code/stable-diffusion-webui && python launch.py --deepdanbooru --share --xformers --listen运行项目后,点击右侧添加,创建 外部访问链接 。

-
访问StableDiffusion的WebUI
复制外部访问链接,在浏览器粘贴并访问,就成功打开WebUI界面啦。

-
生成镜像
点击右上角 将当前环境制作为镜像,点击 智能生成,在
AUTOMATIC1111/stable-diffusion-webui基础镜像下生成,点击 构建,完成对镜像的构建。
之后安装上一章的步骤,将镜像配置到你的项目里就好啦。
配置好环境后,再次访问,在终端输入以下指令直接运行 WebUI 。
cd /gemini/code/stable-diffusion-webui && python launch.py --deepdanbooru --share --xformers --listen
3.3 StableDiffusion 使用
-
生成第一张美图
部署好了当然是要生成一张图,我选择生成一张猫猫图,结果如下。

库自带的模型是
v1-5-pruned-emaonly模型,这个模型是官方的1.5 版本预训练模型,是在512*512的小尺寸图像上训练的,所以说如果图像尺寸超过1000的话,容易出现多头多人的情况。 在这里我选择的参数与提示词如下:
-
提示词(prompt):
1 cat -
负面提示词(Negative prompt):
out of frame,(worst quality, low quality, normal quality:2),text,bad eyes,weird eyes closed eyes,badhandv4:0.8,OverallDetail,render,bad quality,worst quality,signature,watermark,extra limbs, -
迭代步数(Steps)、采样器(Sampler)、提示词相关性(CFG scale):
Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, -
随机种子(Seed)、图像尺寸(Size)、模型(Model)
Seed: 3052626755, Size: 384x512, Model hash: 6ce0161689, Model: v1-5-pruned-emaonly, Version: v1.6.0
生成的猫猫图如下:

-
-
批量生成
我想要更多的猫猫图,于是增大了生成的
Batch Count和Batch size,生成结果如下。
可以看到一下生成了16张猫猫图,它实际上是分了两批,每批生成8张,这样生成的。
Batch count控制了生成批次的数量,Batch size控制每批生成图片的数量。Batch size越大对显卡显存要求越高,当然白嫖的24g显存不在话下了。
可以看到生成的图像各有千秋,甚至有的生成了个房子(太离谱了),所以选择合适的种子很重要。可以通过批量生成找到自己喜欢的图像风格的种子,固定下来进行进一步操作。
我很喜欢第四张,大脸狸花猫,于是点开图片,可以在图片下方看到种子号
2617670965。
-
图像放大
我想放大刚才选中的大脸狸花猫图,可以通过固定种子,并通过
Hires fix的方法放大生成图像。我想使用一个名为 R-ESRGAN4x 的放大算法,从云平台下载太慢了,选择从 该github链接 本地下载,并放在
/gemini/code/stable-diffusion-webui/models/RealESRGAN/RealESRGAN_x4plus.pth路径下。设置以下参数,重新生成,结果如下。

成功将图像尺寸放大到原来的两倍,即 768*1024 的尺寸。图像参数如下:
1 cat Negative prompt: out of frame,(worst quality, low quality, normal quality:2),text,bad eyes,weird eyes closed eyes,badhandv4:0.8,OverallDetail,render,bad quality,worst quality,signature,watermark,extra limbs, Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 7, Seed: 2617670965, Size: 384x512, Model hash: 6ce0161689, Model: v1-5-pruned-emaonly, Denoising strength: 0.35, Hires upscale: 2, Hires upscaler: R-ESRGAN 4x+, Version: v1.6.0猫猫图如下:

效果还不错,不过我还想让他更清晰一点,于是选择让他放大4倍,结果如下。

可以看到,真的清晰了不少。
-
图生图
图生图就是以给的图片为基准,生成其他的图片,我就像用刚才生成的猫猫图,来生成一个宇宙的星系,于是写了以下的提示词。
stars,out space,galaxy,负面提示词不变,分两个批次生成16张星系图片,结果如下。

可以看到,生成了具有猫猫形状的星系图案,我从中挑了一张最喜欢的,就是下面这张。

图片参数如下:
stars,out space,galaxy, Negative prompt: out of frame,(worst quality, low quality, normal quality:2),text,bad eyes,weird eyes closed eyes,badhandv4:0.8,OverallDetail,render,bad quality,worst quality,signature,watermark,extra limbs, Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 3, Seed: 3318537879, Size: 768x1024, Model hash: 6ce0161689, Model: v1-5-pruned-emaonly, Denoising strength: 0.7, Version: v1.6.0以上就尝试玩SD的基本功能啦,之后可以再玩一些进阶玩法,用更厉害的模型,添加lora、ControlNet等插件,生成更可控好看的图片。
相关文章:
【DataWhale学习】用免费GPU线上跑StableDiffusion项目实践
用免费GPU线上跑SD项目实践 DataWhale组织了一个线上白嫖GPU跑chatGLM与SD的项目活动,我很感兴趣就参加啦。之前就对chatGLM有所耳闻,是去年清华联合发布的开源大语言模型,可以用来打造个人知识库什么的,一直没有尝试。而SD我…...
基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的铁轨缺陷检测系统(Python+PySide6界面+训练代码)
摘要:开发铁轨缺陷检测系统对于物流行业、制造业具有重要作用。本篇博客详细介绍了如何运用深度学习构建一个铁轨缺陷检测系统,并提供了完整的实现代码。该系统基于强大的YOLOv8算法,并对比了YOLOv7、YOLOv6、YOLOv5,展示了不同模…...
3.基础算法之搜索与图论
1.深度优先搜索 深度优先搜索(DFS,Depth First Search)是一种用于遍历或搜索树或图的算法。它将当前状态按照一定的规则顺序,先拓展一步得到一个新状态,再对这个新状态递归拓展下去。如果无法拓展,则退回…...
Java模板方法模式源码剖析及使用场景
一、原理与通俗理解 模板方法模式定义了一个算法的骨架,将某些步骤推迟到子类中实现。模板方法定义一个算法的骨架,将一些步骤的实现延迟到子类中完成。这样做的目的是确保算法的结构保持不变,同时又可以为不同的子类提供特定步骤的实现。 比如去餐馆吃饭,餐馆有固定的流程(下…...
c++ 新的函数声明语法
右值引用(&&) 右值引用(&&)允许我们定义接受临时对象或移动语义的函数。 void foo(int&& x); // 右值引用参数默认参数 允许在函数声明中指定参数的默认值。 void bar(int x, double y 3.14); // 带有默认参数的函数声明noexcept关键字 指示函数…...
一款好用的AI工具——边界AICHAT
目录 一、简介二、注册及登录三、主要功能介绍3.1、模型介绍3.2、对话模型历史记录3.3、创作中心3.4、AI绘画SD3.5、文生图3.6、图生图3.7、线稿生图3.8、艺术二维码3.9、秀图广场3.10、AI绘画创作人像辅助器 一、简介 人工智能(AI)是一门研究、开发用于…...
谷歌承认“窃取”OpenAI模型关键信息
什么?谷歌成功偷家OpenAI,还窃取到了gpt-3.5-turbo关键信息??? 是的,你没看错。 根据谷歌自己的说法,它不仅还原了OpenAI大模型的整个投影矩阵(projection matrix)&…...
蓝桥杯(3.10)
1219. 移动距离 import java.util.Scanner; public class Main{public static void main(String[] args) {Scanner sc new Scanner(System.in);int w sc.nextInt();int m sc.nextInt();int n sc.nextInt();m--;n--;//由从1开始变为从0开始//求行号int x1 m/w, x2 n/w;//…...
Hololens 2应用开发系列(3)——MRTK基础知识及配置文件配置(中)
Hololens 2应用开发系列(3)——MRTK基础知识及配置文件配置(中) 一、前言二、输入系统2.1 MRTK输入系统介绍2.2 输入数据提供者(Input Data Providers)2.3 输入动作(Input Actions)2…...
吴恩达深度学习笔记:深度学习引言1.1-1.5
目录 第一门课:神经网络和深度学习 (Neural Networks and Deep Learning)第一周:深度学习引言(Introduction to Deep Learning)1.1 欢迎(Welcome)1.2 什么是神经网络?(What is a Neural Network)1.3 神经网络的监督学习(Supervised Learning …...
【Hadoop大数据技术】——Hadoop概述与搭建环境(学习笔记)
📖 前言:随着大数据时代的到来,大数据已经在金融、交通、物流等各个行业领域得到广泛应用。而Hadoop就是一个用于处理海量数据的框架,它既可以为海量数据提供可靠的存储;也可以为海量数据提供高效的处理。 目录 &#…...
蓝桥杯2023年第十四届省赛真题-工作时长
文件数据 把数据复制到excel中 数据按照增序排序 选中列数据,设置单元格格式,选择下述格式。注意,因为求和之后总小时数可能会超过24小时,所以不要选择最前面是hh的 设置B2 A2 - A1, B4 A4 - A3;然后选中已经算出…...
nginx禁止国外ip访问
1.安装geoip2扩展依赖 yum install libmaxminddb-devel -y 2.下载ngx_http_geoip2_module模块 https://github.com/leev/ngx_http_geoip2_module.git 3.编译安装 ./configure --add-module/datasdb/ngx_http_geoip2_module-3.4 4.下载最新数据库文件 模块安装成功后,还要…...
《腾讯音乐》24校招Java后端一面面经
1.手写LRU 2.项目拷打 3.Https客户端校验证书的细节? 4.对称加密和非对称加密的区别?你分别了解哪些算法? 5.在信息传输过程中,Https用的是对称加密还是非对称加密? 6.怎么防止下载的文件被劫持和篡改? 7.H…...
JavaScript:ES至今发展史简说
ECMAScript(简称ES)是JavaScript的标准,它的发展史经历了多个版本的迭代,以下是主要里程碑: ES1 (1997年6月):首个正式发布的ECMAScript标准,基于当时的JavaScript(由Netscape公司开…...
Linux:进程
进程 知识铺垫冯诺依曼体系结构操作系统(OS) 进程概念进程的查看ps 命令获取进程 pid文件内查看进程终止进程的方式kill命令快捷键 进程的创建 forkfork 返回值问题 进程状态运行状态 :R休眠状态:S (可中断)…...
【Vue3】defineExpose 实践
【Vue3】defineExpose 实践 defineExpose 是 Vue 3 的 <script setup> 语法糖中提供的一个函数,用于显式地暴露组件的属性、方法或其他响应式状态给其父组件或外部使用。这是在使用 <script setup> 语法时,控制组件公开哪些内部状态和方法的…...
centos7.9安装nacos
centos7.9安装nacos2.3.1 在centos x86_64环境安装nacos2.31环境准备 jdk1.8 、 mysql、 nacos 在window11环境安装nacos2.31 在centos x86_64环境安装nacos2.31 环境准备 jdk1.8 、 mysql、 nacos Nacos 依赖 Java 环境来运行。我们通过下载编译后压缩包方式安装。 重点踩坑…...
ARM/Linux嵌入式面经(四):浙江大华
大华一面 嵌入式 主要是问的项目相关 标准的十五分钟 电话面 这个面试官主要问项目,我同门面的全问八股,可能面试官不一样吧 文章目录 UART串口通信的波特率,常用波特率有哪些串口通信校验方式是什么,有什么区别方便简单的奇偶校验偶校验(even parity)累加和校验CRC循环冗…...
ubuntu 18.04安装教程(详细有效)
文章目录 一、下载ubuntu 18.04镜像二、安装ubuntu1. 点击下载好的Vmware Workstation,点击新建虚拟机,选择 “自定义(高级)”,之后下一步。2. 默认配置,不需要更改,点击下一步。3. 选择 “安装程序光盘映像文件(iso)(…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
