当前位置: 首页 > news >正文

软件杯 深度学习 opencv python 公式识别(图像识别 机器视觉)

文章目录

  • 0 前言
  • 1 课题说明
  • 2 效果展示
  • 3 具体实现
  • 4 关键代码实现
  • 5 算法综合效果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的数学公式识别算法实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题说明

手写数学公式识别较传统OCR问题而言,是一个更复杂的二维手写识别问题,其内部复杂的二维空间结构使得其很难被解析,传统方法的识别效果不佳。随着深度学习在各领域的成功应用,基于深度学习的端到端离线数学公式算法,并在公开数据集上较传统方法获得了显著提升,开辟了全新的数学公式识别框架。然而在线手写数学公式识别框架还未被提出,论文TAP则是首个基于深度学习的端到端在线手写数学公式识别模型,且针对数学公式识别的任务特性提出了多种优化。

公式识别是OCR领域一个非常有挑战性的工作,工作的难点在于它是一个二维的数据,因此无法用传统的CRNN进行识别。

在这里插入图片描述

2 效果展示

这里简单的展示一下效果

在这里插入图片描述

在这里插入图片描述

3 具体实现

在这里插入图片描述

神经网络模型是 Seq2Seq + Attention + Beam
Search。Seq2Seq的Encoder是CNN,Decoder是LSTM。Encoder和Decoder之间插入Attention层,具体操作是这样:Encoder到Decoder有个扁平化的过程,Attention就是在这里插入的。具体模型的可视化结果如下

在这里插入图片描述

4 关键代码实现

class Encoder(object):"""Class with a __call__ method that applies convolutions to an image"""def __init__(self, config):self._config = configdef __call__(self, img, dropout):"""Applies convolutions to the imageArgs:img: batch of img, shape = (?, height, width, channels), of type tf.uint8tf.uint8 因为 2^8 = 256,所以元素值区间 [0, 255],线性压缩到 [-1, 1] 上就是 img = (img - 128) / 128Returns:the encoded images, shape = (?, h', w', c')"""with tf.variable_scope("Encoder"):img = tf.cast(img, tf.float32) - 128.img = img / 128.with tf.variable_scope("convolutional_encoder"):# conv + max pool -> /2# 64 个 3*3 filters, strike = (1, 1), output_img.shape = ceil(L/S) = ceil(input/strike) = (H, W)out = tf.layers.conv2d(img, 64, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_1_layer", out)out = tf.layers.max_pooling2d(out, 2, 2, "SAME")# conv + max pool -> /2out = tf.layers.conv2d(out, 128, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_2_layer", out)out = tf.layers.max_pooling2d(out, 2, 2, "SAME")# regular conv -> idout = tf.layers.conv2d(out, 256, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_3_layer", out)out = tf.layers.conv2d(out, 256, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_4_layer", out)if self._config.encoder_cnn == "vanilla":out = tf.layers.max_pooling2d(out, (2, 1), (2, 1), "SAME")out = tf.layers.conv2d(out, 512, 3, 1, "SAME", activation=tf.nn.relu)image_summary("out_5_layer", out)if self._config.encoder_cnn == "vanilla":out = tf.layers.max_pooling2d(out, (1, 2), (1, 2), "SAME")if self._config.encoder_cnn == "cnn":# conv with stride /2 (replaces the 2 max pool)out = tf.layers.conv2d(out, 512, (2, 4), 2, "SAME")# convout = tf.layers.conv2d(out, 512, 3, 1, "VALID", activation=tf.nn.relu)image_summary("out_6_layer", out)if self._config.positional_embeddings:# from tensor2tensor lib - positional embeddings# 嵌入位置信息(positional)# 后面将会有一个 flatten 的过程,会丢失掉位置信息,所以现在必须把位置信息嵌入# 嵌入的方法有很多,比如加,乘,缩放等等,这里用 tensor2tensor 的实现out = add_timing_signal_nd(out)image_summary("out_7_layer", out)return out

学长编码的部分采用的是传统的卷积神经网络,该网络主要有6层组成,最终得到[N x H x W x C ]大小的特征。

其中:N表示数据的batch数;W、H表示输出的大小,这里W,H是不固定的,从数据集的输入来看我们的输入为固定的buckets,具体如何解决得到不同解码维度的问题稍后再讲;

C为输入的通道数,这里最后得到的通道数为512。

当我们得到特征图之后,我们需要进行reshape操作对特征图进行扁平化,代码具体操作如下:

N    = tf.shape(img)[0]
H, W = tf.shape(img)[1], tf.shape(img)[2] # image
C    = img.shape[3].value                 # channels
self._img = tf.reshape(img, shape=[N, H*W, C])

当我们在进行解码的时候,我们可以直接运用seq2seq来得到我们想要的结果,这个结果可能无法达到我们的预期。因为这个过程会相应的丢失一些位置信息。

位置信息嵌入(Positional Embeddings)

通过位置信息的嵌入,我不需要增加额外的参数的情况下,通过计算512维的向量来表示该图片的位置信息。具体计算公式如下:

在这里插入图片描述

其中:p为位置信息;f为频率参数。从上式可得,图像中的像素的相对位置信息可由sin()或cos表示。

我们知道,sin(a+b)或cos(a+b)可由cos(a)、sin(a)、cos(b)以及sin(b)等表示。也就是说sin(a+b)或cos(a+b)与cos(a)、sin(a)、cos(b)以及sin(b)线性相关,这也可以看作用像素的相对位置正、余弦信息来等效计算相对位置的信息的嵌入。

这个计算过程在tensor2tensor库中已经实现,下面我们看看代码是怎么进行位置信息嵌入。代码实现位于:/model/components/positional.py。

def add_timing_signal_nd(x, min_timescale=1.0, max_timescale=1.0e4):static_shape = x.get_shape().as_list()  # [20, 14, 14, 512]num_dims = len(static_shape) - 2  # 2channels = tf.shape(x)[-1]  # 512num_timescales = channels // (num_dims * 2)  # 512 // (2*2) = 128log_timescale_increment = (math.log(float(max_timescale) / float(min_timescale)) /(tf.to_float(num_timescales) - 1))  # -0.1 / 127inv_timescales = min_timescale * tf.exp(tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)  # len == 128 计算128个维度方向的频率信息for dim in range(num_dims):  # dim == 0; 1length = tf.shape(x)[dim + 1]  # 14 获取特征图宽/高position = tf.to_float(tf.range(length))  # len == 14 计算x或y方向的位置信息[0,1,2...,13]scaled_time = tf.expand_dims(position, 1) * tf.expand_dims(inv_timescales, 0)  # pos = [14, 1], inv = [1, 128], scaled_time = [14, 128] 计算频率信息与位置信息的乘积signal = tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1)  # [14, 256] 合并两个方向的位置信息向量prepad = dim * 2 * num_timescales  # 0; 256postpad = channels - (dim + 1) * 2 * num_timescales  # 512-(1;2)*2*128 = 256; 0signal = tf.pad(signal, [[0, 0], [prepad, postpad]])  # [14, 512] 分别在矩阵的上下左右填充0for _ in range(1 + dim):  # 1; 2signal = tf.expand_dims(signal, 0)for _ in range(num_dims - 1 - dim):  # 1, 0signal = tf.expand_dims(signal, -2)x += signal  # [1, 14, 1, 512]; [1, 1, 14, 512]return x

得到公式图片x,y方向的位置信息后,只需要要将其添加到原始特征图像上即可。

5 算法综合效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

软件杯 深度学习 opencv python 公式识别(图像识别 机器视觉)

文章目录 0 前言1 课题说明2 效果展示3 具体实现4 关键代码实现5 算法综合效果6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的数学公式识别算法实现 该项目较为新颖,适合作为竞赛课题方向,学…...

vscode通过多个跳板机连接目标机(两种方案亲测成功)

1、ProxyJump(推荐使用) 需要OpenSSH 7.3以上版本才可使用,可用下列命令查看: ssh -V ProxyJump命令行使用方法 ssh -J [email protected]:port1,[email protected]:port2 一层跳板机: ssh dst_usernamedst_ip -…...

C++基础复习003

vector去重 第一种&#xff0c;利用set容器的特性进行去重&#xff1a; #include <iostream> #include <vector> #include <set> using namespace std; int main() {vector<int>test{1,2,3,3,3,4,2,3,5,2,63,56,34,24};set<int>s(test.begin(),…...

Docker Commit提交

Docker Commit提交 Docker Commit镜像提交 以一个正在运行的tomcat为例因为docker拉取的镜像都是删减版&#xff0c;所以需要将webapp.dist的文件内容复制到webapps中再将自己制作的镜像放在正在运行服务器上&#xff0c;不是云端服务器上 #进入tomcat&#xff0c;这是一个正…...

百度现在应该怎么去做搜索SEO优化?(川圣SEO)蜘蛛池

baidu搜索&#xff1a;如何联系八爪鱼SEO&#xff1f; baidu搜索&#xff1a;如何联系八爪鱼SEO&#xff1f; baidu搜索&#xff1a;如何联系八爪鱼SEO&#xff1f; 百度搜索引擎优化&#xff08;SEO&#xff09;是一种通过优化网站&#xff0c;提升网页在百度搜索结果中的排…...

登录凭证------

为什么需要登录凭证&#xff1f; web开发中&#xff0c;我们使用的协议http是无状态协议&#xff0c;http每次请求都是一个单独的请求&#xff0c;和之前的请求没有关系&#xff0c;服务器就不知道上一步你做了什么操作&#xff0c;我们需要一个办法证明我没登录过 制作登录凭…...

matplotlib系统学习记录

日期&#xff1a;2024.03.12 内容&#xff1a;将matplotlib的常用方法做一个记录&#xff0c;方便后续查找。 基本使用 # demo01 from matplotlib import pyplot as plt # 设置图片大小,也就是画布大小 fig plt.figure(figsize(20,8),dpi80)#图片大小&#xff0c;清晰度# 准…...

【DL】ML系统学习笔记 1

【DL】ML系统学习笔记 1 1. 机器学习定义2. 机器学习三大任务3. 机器学习定义回归举例4. Gradient Descent 优化5. Gradient Descent 优化步骤6. 回归步骤小姐7. Linear models8. 核心步骤流程9. 模型优化9. 深度学习引出1. 机器学习定义 Machine Learning Looking for Functio…...

ffmpeg视频处理常用命令

1.ffmpeg主要参数 -f fmt&#xff08;输入/输出&#xff09; 强制输入或输出文件格式。 格式通常是自动检测输入文件&#xff0c; 并从输出文件的文件扩展名中猜测出来&#xff0c;所以在大多数情况下这个选项是不需要的。-i url&#xff08;输入&#xff09; 输入文件的网址-…...

前端npm和yarn更换国内淘宝镜像

NPM 查询当前镜像 npm get registry 设置为淘宝镜像 npm config set registry https://registry.npm.taobao.org/ (旧地址) npm config set registry https://registry.npmmirror.com/ (最新地址) 设置为官方镜像 npm config set registry https://registry.n…...

华为配置OSPF的Stub区域示例

配置OSPF的Stub区域示例 组网图形 图1 配置OSPF Stub区域组网图 Stub区域简介配置注意事项组网需求配置思路操作步骤配置文件 Stub区域简介 Stub区域的ABR不传播它们接收到的自治系统外部路由&#xff0c;在Stub区域中路由器的路由表规模以及路由信息传递的数量都会大大减少…...

学会Web UI框架--Bootstrap,快速搭建出漂亮的前端界面

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; 所属的专栏&#xff1a;前端泛海 景天的主页&#xff1a;景天科技苑 文章目录 Bootstrap1.Bootstrap介绍2.简单使用3.布局容器4.Bootstrap实现轮播…...

C语言学习大纲

笔者看了下某二本的C语言考研大纲&#xff0c;供平常学习参考&#xff0c;主要考察知识点: C语言概述 &#xff08;1&#xff09; 了解程序设计语言的语法 &#xff08;2&#xff09; 掌握C语言的特点 &#xff08;3&#xff09; 掌握问题求解的过程数据描述 &#xff08;1&am…...

Unity URP 如何写基础的曲面细分着色器

左边是默认Cube在网格模式下经过曲面细分的结果&#xff0c;右边是原状态。 曲面细分着色器在顶点着色器、几何着色器之后&#xff0c;像素着色器之前。 它的作用时根据配置信息生成额外的顶点以切割原本的面片。 关于这部分有一个详细的英文教程&#xff0c;感兴趣可以看一…...

android pdf框架-8,图片缓存

解码会产生很多图片,滑过后不要显示,如果直接回收,会浪费不少资源. 在没有缓存的情况下,会看到gc还是比较频繁的. 有了缓存后,明显gc少了. 目录 常用的缓存 自定义缓存 显示相关的内存缓存 解码缓存池 内存缓存实现: 解码缓存池实现: 常用的缓存 lrucache,这是最常用…...

UE5.2 SmartObject使用实践

SmartObject是UE5新出的一项针对AI的功能&#xff0c;可为开发者提供如公园长椅、货摊等交互对象的统一外观封装&#xff0c;如UE的CitySample&#xff08;黑客帝国Demo&#xff09;中就运用到了SmartObject。 但SmartObject实践起来较为繁琐&#xff0c;主要依赖于AI及行为树…...

奇舞周刊第521期:实现vue3响应式系统核心-MVP 模型

奇舞推荐 ■ ■ ■ 实现vue3响应式系统核心-MVP 模型 手把手带你实现一个 vue3 响应式系统&#xff0c;代码并没有按照源码的方式去进行组织&#xff0c;目的是学习、实现 vue3 响应式系统的核心&#xff0c;用最少的代码去实现最核心的能力&#xff0c;减少我们的学习负担&…...

Mybatis-plus手写SQL如何使用条件构造器和分页

Mybatis-plus手写SQL如何使用条件构造器和分页插件 前言&#xff1a;在使用mybatis-plus过程中&#xff0c;使用条件构造器和分页插件非常效率的提升开发速度&#xff0c;但有些业务需要使用连表查询&#xff0c;此时还想使用条件构造器和使用分页时应该如何操作呢&#xff1f…...

Vue的table组件合并行方法

/*** param {Array} data - 原始数据集合* param {string} addParamer - 这个是自定义的参数&#xff0c;向每个对象中添加一个参数 按照这个参数的个数进行合并* param {} args - 剩余参数 这个是合并规则 &#xff0c;比如按照时间合并 那就传入对象中的时间参数date&#xf…...

5. C语言字符串处理常用方法

在 C 语言中,字符串是以字符数组的形式表示的,以空字符 \0 结尾。C 语言提供了一系列的字符串处理函数,可以用于字符串的操作、查找、比较等。以下是一些常用的 C 语言字符串处理函数: 1. 字符串定义与初始化 #include <stdio.h> #include <string.h>int mai…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...