当前位置: 首页 > news >正文

springboot Mongo大数据查询优化方案

前言

因为项目需要把传感器的数据保存起来,当时设计的时是mongo来存储,后期需要从mongo DB里查询传感器的数据记录。由于传感器每秒都会像mongo数据库存500条左右的数据,1天就有4320万条数据,要想按照时间条件去查询,经常会被卡死。以下是我的解决过程和方案。

解决方案

水平分表

按照传感器类型分表

将不同不同传感器的数据,分别存入不同的表(集合)中,这样每个表的数据就成倍减少,但是过了一段时间发现查询嗨是很慢,每个传感器每秒需要保存的数据也有100条左右,一天就是864万条数据。仅靠类型分表是不行的。

按照日期分表

每个表每天的数据有864万条数据,一个月就是2.6亿条数据。于是按照日期,每天对每个传感器类型建设了一个表 表(集合)名格式如 ‘temperature_sensor_20240310’。
如保存数据时候自动创建分表代码如下:

    @Asyncpublic <T> void insertSharding(Collection<? extends T> batchToSave, String collectionName) {String collectionNameSharding = collectionName + "_" + DateUtil.today();if (CollectionUtil.isNotEmpty(batchToSave)) {mongoTemplate.insert(batchToSave, collectionNameSharding);}}
  • DateUtil.today() 是我工具类里的方法等效于 DateUtil.format(new Date(),“yyyyMMdd”)
  • 注意请保证每个传入的对象里都有一个createTime字段,查询的时候会用到

按照时间查询分表的方法,代码如下:

    public <T> List<T>  getSecondData(LocalDateTime start, LocalDateTime end, Class<T> entityClass, String collectionName) {String collectionNameSharding =collectionName+"_"+DateUtil.format(start,"yyyyMMdd");// 设置时间范围查询条件Criteria criteria = Criteria.where("createTime").gte(start).lte(end);// 查询数据return mongoTemplate.find(Query.query(criteria).limit(1000).skip(0), entityClass,collectionNameSharding);}
  • 代码中的 .limit(1000) 表示限制查询结果的数量,即最多返回1000条匹配的文档记录。这对于分页查询或者批量处理数据时非常有用,可以避免一次性加载过多数据导致内存溢出或响应延迟。

  • .skip(0) 则表示跳过前0条匹配的文档记录,从第一条开始返回。在分页查询场景下,如果你想获取第二页的数据,通常会将skip的参数设置为每页大小(假设也是1000),即 .skip(1000),这样就会跳过前1000条,然后取接下来的1000条数据。

    经过以上操作查询数据的时候不会被卡顿了,但是查询速度需要2s左右,项目需求查询速度至少得在200ms内,所以还得继续优化。

建立索引

因为mongo水平分表的缘故,不可能人工去对每个字段创建的表(集合)去建立时间索引,需要代码实现,创建表的同时,自动创建时间索引。

  • 修改分表数据保存方法如下:
  @Asyncpublic <T> void insertSharding(Collection<? extends T> batchToSave, String collectionName) {String collectionNameSharding = collectionName + "_" + DateUtil.today();if (!mongoTemplate.collectionExists(collectionNameSharding)) {mongoTemplate.createCollection(collectionNameSharding);IndexOperations indexOps = mongoTemplate.indexOps(collectionNameSharding);indexOps.ensureIndex(new Index().on("createTime", Sort.Direction.ASC).named(collectionNameSharding+"_createTime"));}if (CollectionUtil.isNotEmpty(batchToSave)) {mongoTemplate.insert(batchToSave, collectionNameSharding);}}
  • named(collectionNameSharding+“_createTime”)) 即创建索引的名称
  • on(“createTime”, Sort.Direction.ASC) 即使用集合中的createTime字段按照升序建立索引。

总结

经过以上水平分表和建立索引的方法,按照时间条件去查询的方法已经可以优化到200ms左右了。本篇教程到此未知,如果觉得不错,记得一键三连,感谢各位的支持!!!

相关文章:

springboot Mongo大数据查询优化方案

前言 因为项目需要把传感器的数据保存起来&#xff0c;当时设计的时是mongo来存储&#xff0c;后期需要从mongo DB里查询传感器的数据记录。由于传感器每秒都会像mongo数据库存500条左右的数据&#xff0c;1天就有4320万条数据&#xff0c;要想按照时间条件去查询&#xff0c;…...

Ollama管理本地开源大模型,用Open WebUI访问Ollama接口

现在开源大模型一个接一个的&#xff0c;而且各个都说自己的性能非常厉害&#xff0c;但是对于我们这些使用者&#xff0c;用起来就比较尴尬了。因为一个模型一个调用的方式&#xff0c;先得下载模型&#xff0c;下完模型&#xff0c;写加载代码&#xff0c;麻烦得很。 对于程…...

Linux--基本知识入门

一.几个基本知识 终端: CtrlAltT 或者桌面/文件夹右键,打开终端切换为管理员: sudo su 退出:exit查看内核版本号: uname -a内核版本号含义: 5 代表主版本号;13代表次版本号;0代表修订版本号;30代表修订版本的第几次微调;数字越大表示内核越新. 二.目录…...

基于springboot+vue实现的大学计算机课程管理平台的设计与实现(全套资料)

一、系统架构 前端&#xff1a;vue | antv 后端&#xff1a;springboot | mybatis-plus 环境&#xff1a;jdk17 | mysql | maven | node | redis 二、代码及数据库 三、功能介绍 01. 登录页 02. 首页 03. 系统基础模块-用户管理 04. 系统基础模块-部门…...

LeetCode2115. 从给定原材料中找到所有可以做出的菜

拓扑排序 题面 题目链接&#xff1a;2115. 从给定原材料中找到所有可以做出的菜 - 力扣&#xff08;LeetCode&#xff09; 你有 n 道不同菜的信息。给你一个字符串数组 recipes 和一个二维字符串数组 ingredients 。第 i 道菜的名字为 recipes[i] &#xff0c;如果你有它 所有…...

项目性能优化—性能优化的指标、目标

项目性能优化—性能优化的指标、目标 性能优化的终极目标是什么 性能优化的目标实际上是为了更好的用户体验&#xff1a; 一般我们认为用户体验是下面的公式&#xff1a; 用户体验 产品设计&#xff08;非技术&#xff09; 系统性能 ≈ 系统性能 快 那什么样的体验叫快呢…...

蓝桥杯刷题(三)

一、P8752 [蓝桥杯 2021 省 B2] 特殊年份&#xff08;洛谷&#xff09; 题目描述 今年是 2021 年&#xff0c;2021 这个数字非常特殊, 它的千位和十位相等, 个位比百位大 1&#xff0c;我们称满足这样条件的年份为特殊年份。 输入 5 个年份&#xff0c;请计算这里面有多少个…...

20240312-算法复习打卡day21||● 530.二叉搜索树的最小绝对差 ● 501.二叉搜索树中的众数 ● 236. 二叉树的最近公共祖先

530.二叉搜索树的最小绝对差 1.中序遍历得到升序数组 class Solution { private:vector<int> vec;void traversal(TreeNode* root) {if (root NULL) return;if (root->left) traversal(root->left);vec.push_back(root->val);if (root->right) traversal(r…...

今天我们来学习一下关于MySQL数据库

目录 前言: 1.MySQL定义&#xff1a; 1.1基础概念&#xff1a; 1.1.1数据库&#xff08;Database&#xff09;&#xff1a; 1.1.2表&#xff08;Table&#xff09;&#xff1a; 1.1.3记录&#xff08;Record&#xff09;与字段&#xff08;Field&#xff09;&#xff1a; …...

长期护理保险可改善老年人心理健康 | CHARLS CLHLS CFPS 公共数据库周报(3.6)...

欢迎报名2024年“真实世界临床研究”课程&#xff01; 本周郑老师开讲&#xff1a;“真实世界临床研究”培训班&#xff0c;3月16-17日两天&#xff0c;欢迎报名&#xff01; CHARLS公共数据库‍ CHARLS数据库简介中国健康与养老追踪调查(China Health and Retirement Longitud…...

49、C++/友元、常成员函数和常对象、运算符重载学习20240314

一、封装类 用其成员函数实现&#xff08;对该类的&#xff09;数学运算符的重载&#xff08;加法&#xff09;&#xff0c;并封装一个全局函数实现&#xff08;对该类的&#xff09;数学运算符的重载&#xff08;减法&#xff09;。 代码&#xff1a; #include <iostream…...

SQL Server错误:15404

执行维护计划失败&#xff0c;提示SQL Server Error 15404 无法获取有关... 异常如下图&#xff1a; 原因&#xff1a;数据库用户名与计算机名称不一致 解决办法&#xff1a;1.重名称数据库用户名 将前缀改成计算机名 2.重启SQL Server代理...

Halcon文件操作

1、Region读写操作 region&#xff08;区域&#xff09;是一种重要的数据类型&#xff0c;用于表示图像中的特定区域。这些区域可以代表图像中的目标、感兴趣的区域、边缘、形状等等 read_image (Image, printer_chip/printer_chip_01) dev_open_window (0, 0, 512, 512, black…...

【测试知识】业务面试问答突击版1

高内聚低耦合 高内聚指的是将相关的功能或数据组织在一起&#xff0c;使得模块内部的各个元素紧密地联系在一起&#xff0c;完成特定的任务。 低耦合指的是模块之间的依赖关系尽可能地降低&#xff0c;模块之间的接口简单清晰&#xff0c;减少模块之间的相互影响。 文章目录 整…...

使用el-row及el-col页面缩放时出现空行解决方案

问题&#xff1a; 当缩放到90%或者110%&#xff0c;选中下拉后&#xff0c;下方就会出现空行 如下图所示&#xff1a; 关于el-row 和 el-col &#xff1a; 参数说明类型可选值默认值span栅格占据的列数number—24offset栅格左侧的间隔格数number—0push栅格向右移动格数number…...

java中几种对象存储(文件存储)中间件的介绍

一、前言 在博主得到系统中使用的对象存储主要有OSS&#xff08;阿里云的对象存储&#xff09; COS&#xff08;腾讯云的对象存储&#xff09;OBS&#xff08;华为云的对象存储&#xff09;还有就是MinIO 这些玩意。其实这种东西大差不差&#xff0c;几乎实现方式都是一样&…...

网络工程师——2024自学

一、怎样从零开始学习网络工程师 当今社会&#xff0c;人人离不开网络。整个IT互联网行业&#xff0c;最好入门的&#xff0c;网络工程师算是一个了。 什么是网络工程师呢&#xff0c;简单来说&#xff0c;就是互联网从设计、建设到运行和维护&#xff0c;都需要网络工程师来…...

SwiftUI的Picker

SwiftUI的Picker 本章来记录一下SwiftUI中三种不同Picker的用法 &#xff0c;分别为normalPicker &#xff0c; wheelPicker&#xff0c; segmentedPicker 。可以根据不同需求展示不同的Picker import SwiftUIstruct PickerBootCamp: View {State var selection: String &quo…...

物联网技术助力智慧城市转型升级:智能、高效、可持续

目录 一、物联网技术概述及其在智慧城市中的应用 二、物联网技术助力智慧城市转型升级的路径 1、提升城市基础设施智能化水平 2、推动公共服务智能化升级 3、促进城市治理现代化 三、物联网技术助力智慧城市转型升级的成效与展望 1、成效显著 2、展望未来 四、物联网技…...

YOLOv7_pose-Openvino和ONNXRuntime推理【CPU】

纯检测系列&#xff1a; YOLOv5-Openvino和ONNXRuntime推理【CPU】 YOLOv6-Openvino和ONNXRuntime推理【CPU】 YOLOv8-Openvino和ONNXRuntime推理【CPU】 YOLOv7-Openvino和ONNXRuntime推理【CPU】 YOLOv9-Openvino和ONNXRuntime推理【CPU】 跟踪系列&#xff1a; YOLOv5/6/7-O…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...