当前位置: 首页 > news >正文

SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

目录

    • SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.基于GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;
2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.优化学习率,神经元个数,注意力机制的键值, 正则化参数。

模型描述

GWO-TCN-BiGRU-Attention是一个结合了灰狼算法(GWO)、时间卷积网络(TCN)、双向门控循环单元(BiGRU)和注意力机制(Attention)的复杂模型,用于多变量时间序列预测。下面将逐一解释这些组件以及它们如何协同工作:

灰狼算法(GWO):

灰狼算法是一种启发式优化算法,模拟了灰狼群体中的协作和竞争行为。

在这个模型中,GWO可能被用于优化TCN、BiGRU或Attention机制中的超参数,以找到最佳的网络配置和训练设置。

GWO通过模拟灰狼的狩猎过程(如包围、跟踪、追捕和攻击猎物)来搜索问题的最优解。

时间卷积网络(TCN):

TCN是一种具有时序特性的卷积神经网络,适用于处理时间序列数据。

它结合了因果卷积和膨胀卷积来处理时序依赖关系,特别是长期依赖。

在这个模型中,TCN可能负责从多变量时间序列中提取特征。

双向门控循环单元(BiGRU):

BiGRU是门控循环单元(GRU)的一种变体,能够同时考虑输入序列的前后信息。

GRU是一种门控循环神经网络(RNN),通过门控机制控制信息的流动,从而更好地捕捉时间序列中的长期依赖关系。

在这个模型中,BiGRU可能负责进一步处理TCN提取的特征,并捕捉这些特征之间的时序关系。

注意力机制(Attention):

注意力机制允许模型在处理序列数据时,将焦点放在与当前输出最相关的输入部分上。

在这个模型中,Attention机制可能用于对BiGRU的输出进行加权处理,以便在预测时更强调重要的特征。

通过引入注意力机制,模型可以更有效地处理复杂和多变的时间序列数据。

综上所述,GWO-TCN-BiGRU-Attention模型的工作流程可能如下:

首先,使用GWO算法优化TCN、BiGRU和Attention机制的超参数。

然后,将多变量时间序列输入到TCN中,提取出与预测任务相关的特征。

接着,将TCN的输出传递给BiGRU,进一步捕捉特征之间的时序关系。

最后,通过Attention机制对BiGRU的输出进行加权处理,生成最终的预测结果。

需要注意的是,这个模型的复杂性和计算成本可能较高,因此在实际应用中需要权衡其性能和计算资源的需求。同时,针对具体的时间序列预测任务,可能还需要对模型进行适当的调整和优化。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测
convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endtempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);tempLayers = gruLayer(NumNeurons,"Name","gru1");
lgraph = addLayers(lgraph,tempLayers);tempLayers = [FlipLayer("flip3")gruLayer(NumNeurons,"Name","gru2")];
lgraph = addLayers(lgraph,tempLayers);tempLayers = [concatenationLayer(1,2,"Name","concat")

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测 目录 SCI一区 | Matlab实现GWO-TCN-BiGRU-Attention灰狼算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测预测效果基本介绍模型描述程序…...

SpringMVC的执行原理

SpringMVC的执行原理可以简单地概括为以下几个步骤: 客户端发送请求:客户端(一般是浏览器)发送HTTP请求到服务器,请求特定的URL资源。 前端控制器(DispatcherServlet)接收请求:在Sp…...

Qt + HTTP 线程交互类封装

介绍 QT的HTTP模块封装的交互类&#xff0c;线程运行。使用时添加自己的业务逻辑即可 代码 头文件 /*** file httpcontroller.h* brief 云台相机的协议交互类* author xintong-zhou* date 2024-03-13*/#ifndef HTTPCONTROLLER_H #define HTTPCONTROLLER_H#include <QNet…...

GitHub Copilot+ESP开发实战-串口

上篇文章讲了GitHub Copilot在应用中可能遇到的问题&#xff0c;接下来小启就简单介绍下GitHub Copilot在ESP32开发中C语言实现串口功能&#xff0c;感兴趣的可以看看。 一、向Copilot提问&#xff1a; 1. ESP32用C语言实现串口初始化&#xff1b; 2.配置uart为1&#xff0c…...

C# 使用ffmpeg将图片保存为mp4视频

使用 FFmpeg 这个强大的多媒体处理工具&#xff0c;可以轻松地将一系列图片转换为一个 MP4 视频文件。以下是一个基本的命令行示例来完成这个任务&#xff1a; ffmpeg -framerate 25 -i image-%03d.jpg -c:v libx264 -r 30 -pix_fmt yuv420p output.mp4 命令参数说明&#xf…...

Java安全技术及代码审计技巧

概述 Java安全编码和代码审计是确保Java应用程序安全性的重要环节。本文旨在介绍Java中常见的Web漏洞、安全编码示例以及一些常见漏洞函数&#xff0c;并提供一个自动化查找危险函数的Python脚本。 1. XML外部实体 (XXE) 漏洞 介绍 XML文档结构包括XML声明、DTD文档类型定义&…...

C# 使用OpenCvSharp4将Bitmap合成为MP4视频的环境

环境安装步骤&#xff1a; 在VS中选中项目或者解决方案&#xff0c;鼠标右键&#xff0c;选择“管理Nuget包”&#xff0c;在浏览窗口中搜索OpenCVSharp4 1.搜索OpenCvSharp4,选择4.8.0版本&#xff0c;点击安装 2.搜索OpenCvSharp4.runtime.win,选择4.8.0版本&#xff0c;点…...

[游戏开发][Unity] 导出Xcode工程,完成调试与发布

Unity导出Xcode工程(模拟器版本与真机调试) [游戏开发][Unity] 打包Xcode工程模拟器真机调试_unity5 打包xcod-CSDN博客 Unity导出发布版本Xcode工程&#xff0c;上传app到官网&#xff0c;正式发布或创建TestFlight Xcode发布AppStore与TestFlight全流程_xcode 上传到testfit-…...

JSONP 实现跨域请求案例

后端使用 express 搭建&#xff0c;案例代码如下&#xff1a; const express require(express)const app express() const PORT 3000app.get(/data, (req, res) > {const jsonData {name: Alan,age: 666,city: GD}const callback req.query.callback // 获取前端中的回…...

2024年智慧城市、人文发展与区域经济国际会议(ICSCCDRE 2024)

2024年智慧城市、人文发展与区域经济国际会议&#xff08;ICSCCDRE 2024&#xff09; 2024 International Conference on Smart Cities, Cultural Development and Regional Economy 会议简介&#xff1a; 城市经济人文发展是一个综合性的过程&#xff0c;它关注城市在经济、…...

目标检测——PP-YOLO算法解读

PP-YOLO系列&#xff0c;均是基于百度自研PaddlePaddle深度学习框架发布的算法&#xff0c;2020年基于YOLOv3改进发布PP-YOLO&#xff0c;2021年发布PP-YOLOv2和移动端检测算法PP-PicoDet&#xff0c;2022年发布PP-YOLOE和PP-YOLOE-R。由于均是一个系列&#xff0c;所以放一起解…...

多特征变量序列预测(11) 基于Pytorch的TCN-GRU预测模型

往期精彩内容&#xff1a; 时序预测&#xff1a;LSTM、ARIMA、Holt-Winters、SARIMA模型的分析与比较-CSDN博客 风速预测&#xff08;一&#xff09;数据集介绍和预处理-CSDN博客 风速预测&#xff08;二&#xff09;基于Pytorch的EMD-LSTM模型-CSDN博客 风速预测&#xff…...

Lvs+keepalived+nginx搭建高可用负载均衡集群

环境配置 master主机192.168.199.149&#xff0c;虚拟IP192.168.199.148 back备机192.168.199.150 真实服务器1 192.168.199.155 真实服务器2 192.168.199.156 关闭防火墙和selinux master配置&#xff08;149&#xff09; 添加虚拟IP ip addr add 192.168.199.148/24 …...

WPF —— 控件模版和数据模版

1:控件模版简介: 自定义控件模版&#xff1a;自己添加的样式、标签&#xff0c;控件模版也是属于资源的一种&#xff0c; 每一个控件模版都有一唯一的 key&#xff0c;在控件上通过template属性进行绑定 什么场景下使用自定义控件模版&#xff0c;当项目里面多个地方…...

如何动态修改spring中定时任务的调度策略(1)

在我们日常开发中经常会调度工具来处理一下需要定时执行的任务&#xff0c;比如定时导出报表数据给业务方发送邮件。你在工作中是如何这种定时调度&#xff1f; 如何实现调度任务 使用java技术栈的老铁来说&#xff0c;现成定时调度的解决方案应该有很多&#xff0c;总结来说…...

idea import的maven类报红

idea 报红/显示红色的原因 一般报红&#xff0c;显示红色&#xff0c;是因为 idea 在此路径下&#xff0c;找不到这个类。 找到是哪个 jar 包的类导致 idea 报红 点击报红的路径的上一层&#xff0c;进入jar 包。比如&#xff1a; import com.aaa.bbb.ccc.DddDto;这个 impo…...

React——class组件中setState修改state

class组件中通过state去存储当前组件的数据&#xff0c;那怎么对其进行修改呢&#xff1f;就是方法this.setState({ 要修改的部分数据 }) setState() 作用&#xff1a;1 、修改 state 内容&#xff1b;2 、更新 UI 特别注意&#xff1a;react的核心其实是虚拟dom&#xff08;数…...

搭建基于 Snowflake 的 CI/CD 最佳实践!

Snowflake 提供了可扩展的计算和存储资源&#xff0c;和基于 SQL 的界面 Snowsight&#xff0c;方便用户进行数据操作和分析。然而&#xff0c;如果用户想将自己的 CI/CD 流程与 Snowflake 集成时&#xff0c;会发现一些不便之处&#xff08;尤其相比其 SnowSight 优秀的查询能…...

数据结构(五)——树的基本概念

五、树 5.1 树的基本概念 5.1.1 树的定义 树是n(n>0)个结点的有限集合&#xff0c;结点数为0的树称为空树 非空树的特性 有且仅有一个根节点没有后继的结点称为“叶子结点”&#xff08;或终端结点&#xff09;有后继的结点称为“分支结点”&#xff08;或非终端结点&a…...

2.28CACHE,虚拟存储器

主存储器,简称主存。CPU可以直接随机地对其进行访问&#xff0c;也可以和高速缓存器及辅助存储器交换数据。 2> 辅助存储器,简称辅存&#xff0c;不能与CPU直接相连&#xff0c;用来存放当前暂时不用的程序和数据 3> 高速缓冲存储器,位于主存和CPU之间&#xff0c;用来…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...