当前位置: 首页 > news >正文

C版本的-Unet-rknn推理

1. 前言

        之前就想着使用rknn的c版本的api做推理看看,找了一个简单的,那就unet吧,本来想着用rk的demo文件,但是里面是mobilenet,相关的函数没有,卡这也卡了好久,突然发现tengine相关的后处理,拿来用用,终于调试好了!!!(环境自己配置)

2. c代码修改

2.1前处理

const char* img_path = "/home/ubuntu/npu_test/unet/img/01_test.tif";const char* roi_mask_path = "/home/ubuntu/npu_test/unet/img/01_test_mask.png";const char *model_path =  "/home/ubuntu/npu_test/unet/model/eyes_unet-sim-3588.rknn";// Load ROI maskMat roi_img = imread(roi_mask_path, IMREAD_GRAYSCALE);if (roi_img.empty()) {cout << "Image not found: " << roi_mask_path << endl;return -1;}// Load imageMat original_img = imread(img_path);if (original_img.empty()) {cout << "Image not found: " << img_path << endl;return -1;}// Convert image to RGBcvtColor(original_img, original_img, COLOR_BGR2RGB);// Expand batch dimension// Mat img = original_img.reshape(1, 1);Mat img = original_img;

2.2 rknn的模型加载

const int MODEL_IN_WIDTH = 565;const int MODEL_IN_HEIGHT = 584;const int MODEL_IN_CHANNELS = 3;rknn_context ctx = 0;int ret;int model_len = 0;unsigned char *model;// ======================= 初始化RKNN模型 ===================model = load_model(model_path, &model_len);ret = rknn_init(&ctx, model, model_len, 0, NULL);if (ret < 0){printf("rknn_init fail! ret=%d\n", ret);return -1;}// ======================= 获取模型输入输出信息 ===================rknn_input_output_num io_num;ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));if (ret != RKNN_SUCC){printf("rknn_query fail! ret=%d\n", ret);return -1;}// ======================= 设置模型输入 ===================// 使用rknn_input结构体存储模型输入信息, 表示模型的一个数据输入,用来作为参数传入给 rknn_inputs_set 函数rknn_input inputs[1];memset(inputs, 0, sizeof(inputs));inputs[0].index = 0;                                                     // 设置模型输入索引inputs[0].type = RKNN_TENSOR_UINT8;                                      // 设置模型输入类型inputs[0].size = img.cols * img.rows * img.channels() * sizeof(uint8_t); // 设置模型输入大小inputs[0].fmt = RKNN_TENSOR_NHWC;                                        // 设置模型输入格式:NHWCinputs[0].buf = img.data;                                                // 设置模型输入数据// 使用rknn_inputs_set函数设置模型输入ret = rknn_inputs_set(ctx, io_num.n_input, inputs);if (ret < 0){printf("rknn_input_set fail! ret=%d\n", ret);return -1;}// ======================= 推理 ===================printf("rknn_run\n");ret = rknn_run(ctx, nullptr);if (ret < 0){printf("rknn_run fail! ret=%d\n", ret);return -1;}// ======================= 获取模型输出 ===================// 使用rknn_output结构体存储模型输出信息rknn_output outputs[1];memset(outputs, 0, sizeof(outputs));outputs[0].want_float = 1;// 使用rknn_outputs_get函数获取模型输出ret = rknn_outputs_get(ctx, 1, outputs, NULL);if (ret < 0){printf("rknn_outputs_get fail! ret=%d\n", ret);return -1;}

2.3 后处理

float *output_data = (float *)outputs[0].buf;int output_size = outputs[0].size / sizeof(uint32_t);// cout << "channel: " << channel << endl;// cout << "res: " << res << endl;// cout << "size: " << output_size << endl;int img_h = 584;int img_w = 565;int channel = output_size / img_h / img_w;int res = output_size % (img_h * img_w);cout << "channel: " << channel << endl;cout << "res: " << res << endl;int* label_data = new int[img_h * img_w];if (res != 0){fprintf(stderr, "output shape is not supported.\n");}else{/* multi-class segmentation */for (int i = 0; i < img_h; ++i){for (int j = 0; j < img_w; ++j){int argmax_id = -1;float max_conf = std::numeric_limits<float>::min();for (int k = 0; k < channel; ++k){float out_value = output_data[k * img_w * img_h + i * img_w + j];if (out_value > max_conf){argmax_id = k;max_conf = out_value;}}label_data[i * img_w + j] = argmax_id;if (label_data[i * img_w + j] == 1) {label_data[i * img_w + j] = 255;}}}}// 将图像数据存储到一维数组中int* roi_array = new int[img_h * img_w];for (int i = 0; i < img_h; ++i) {for (int j = 0; j < img_w; ++j) {roi_array[i * img_w + j] = static_cast<int>(roi_img.at<uchar>(i, j));}}for (int i = 0; i < img_h; ++i) {for (int j = 0; j < img_w; ++j) {if (roi_array[i * img_w + j] == 0) {label_data[i * img_w + j] = roi_array[i * img_w + j];}}}Mat result_img(img_h, img_w, CV_8UC1);for (int i = 0; i < img_h; ++i) {for (int j = 0; j < img_w; ++j) {result_img.at<uchar>(i, j) = static_cast<uchar>(label_data[i * img_w + j]);}}imwrite("result.png", result_img);

2.4 rknn资源释放

// Release resourcesrknn_outputs_release(ctx, 1, outputs);if (ret < 0){printf("rknn_outputs_release fail! ret=%d\n", ret);return -1;}else if (ctx > 0){// ======================= 释放RKNN模型 ===================rknn_destroy(ctx);}// ======================= 释放模型数据 ===================if (model){free(model);}

 2.5 完整代码

#include <iostream>
#include <opencv2/core/hal/interface.h>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>
#include "rknn_api.h"
#include <chrono>using namespace std;
using namespace cv;static unsigned char *load_model(const char *filename, int *model_size)
{FILE *fp = fopen(filename, "rb");if (fp == nullptr){printf("fopen %s fail!\n", filename);return NULL;}fseek(fp, 0, SEEK_END);int model_len = ftell(fp);unsigned char *model = (unsigned char *)malloc(model_len); // 申请模型大小的内存,返回指针fseek(fp, 0, SEEK_SET);if (model_len != fread(model, 1, model_len, fp)){printf("fread %s fail!\n", filename);free(model);return NULL;}*model_size = model_len;if (fp){fclose(fp);}return model;
}int main() {auto start = std::chrono::high_resolution_clock::now();const char* img_path = "/home/ubuntu/npu_test/unet/img/01_test.tif";const char* roi_mask_path = "/home/ubuntu/npu_test/unet/img/01_test_mask.png";const char *model_path =  "/home/ubuntu/npu_test/unet/model/eyes_unet-sim-3588.rknn";// Load ROI maskMat roi_img = imread(roi_mask_path, IMREAD_GRAYSCALE);if (roi_img.empty()) {cout << "Image not found: " << roi_mask_path << endl;return -1;}// Load imageMat original_img = imread(img_path);if (original_img.empty()) {cout << "Image not found: " << img_path << endl;return -1;}// Convert image to RGBcvtColor(original_img, original_img, COLOR_BGR2RGB);// Expand batch dimension// Mat img = original_img.reshape(1, 1);Mat img = original_img;const int MODEL_IN_WIDTH = 565;const int MODEL_IN_HEIGHT = 584;const int MODEL_IN_CHANNELS = 3;rknn_context ctx = 0;int ret;int model_len = 0;unsigned char *model;// ======================= 初始化RKNN模型 ===================model = load_model(model_path, &model_len);ret = rknn_init(&ctx, model, model_len, 0, NULL);if (ret < 0){printf("rknn_init fail! ret=%d\n", ret);return -1;}// ======================= 获取模型输入输出信息 ===================rknn_input_output_num io_num;ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));if (ret != RKNN_SUCC){printf("rknn_query fail! ret=%d\n", ret);return -1;}// ======================= 设置模型输入 ===================// 使用rknn_input结构体存储模型输入信息, 表示模型的一个数据输入,用来作为参数传入给 rknn_inputs_set 函数rknn_input inputs[1];memset(inputs, 0, sizeof(inputs));inputs[0].index = 0;                                                     // 设置模型输入索引inputs[0].type = RKNN_TENSOR_UINT8;                                      // 设置模型输入类型inputs[0].size = img.cols * img.rows * img.channels() * sizeof(uint8_t); // 设置模型输入大小inputs[0].fmt = RKNN_TENSOR_NHWC;                                        // 设置模型输入格式:NHWCinputs[0].buf = img.data;                                                // 设置模型输入数据// 使用rknn_inputs_set函数设置模型输入ret = rknn_inputs_set(ctx, io_num.n_input, inputs);if (ret < 0){printf("rknn_input_set fail! ret=%d\n", ret);return -1;}// ======================= 推理 ===================printf("rknn_run\n");ret = rknn_run(ctx, nullptr);if (ret < 0){printf("rknn_run fail! ret=%d\n", ret);return -1;}// ======================= 获取模型输出 ===================// 使用rknn_output结构体存储模型输出信息rknn_output outputs[1];memset(outputs, 0, sizeof(outputs));outputs[0].want_float = 1;// 使用rknn_outputs_get函数获取模型输出ret = rknn_outputs_get(ctx, 1, outputs, NULL);if (ret < 0){printf("rknn_outputs_get fail! ret=%d\n", ret);return -1;}float *output_data = (float *)outputs[0].buf;int output_size = outputs[0].size / sizeof(uint32_t);// cout << "channel: " << channel << endl;// cout << "res: " << res << endl;// cout << "size: " << output_size << endl;int img_h = 584;int img_w = 565;int channel = output_size / img_h / img_w;int res = output_size % (img_h * img_w);cout << "channel: " << channel << endl;cout << "res: " << res << endl;int* label_data = new int[img_h * img_w];if (res != 0){fprintf(stderr, "output shape is not supported.\n");}else{/* multi-class segmentation */for (int i = 0; i < img_h; ++i){for (int j = 0; j < img_w; ++j){int argmax_id = -1;float max_conf = std::numeric_limits<float>::min();for (int k = 0; k < channel; ++k){float out_value = output_data[k * img_w * img_h + i * img_w + j];if (out_value > max_conf){argmax_id = k;max_conf = out_value;}}label_data[i * img_w + j] = argmax_id;if (label_data[i * img_w + j] == 1) {label_data[i * img_w + j] = 255;}}}}// 将图像数据存储到一维数组中int* roi_array = new int[img_h * img_w];for (int i = 0; i < img_h; ++i) {for (int j = 0; j < img_w; ++j) {roi_array[i * img_w + j] = static_cast<int>(roi_img.at<uchar>(i, j));}}for (int i = 0; i < img_h; ++i) {for (int j = 0; j < img_w; ++j) {if (roi_array[i * img_w + j] == 0) {label_data[i * img_w + j] = roi_array[i * img_w + j];}}}Mat result_img(img_h, img_w, CV_8UC1);for (int i = 0; i < img_h; ++i) {for (int j = 0; j < img_w; ++j) {result_img.at<uchar>(i, j) = static_cast<uchar>(label_data[i * img_w + j]);}}imwrite("result.png", result_img);// Release resourcesrknn_outputs_release(ctx, 1, outputs);if (ret < 0){printf("rknn_outputs_release fail! ret=%d\n", ret);return -1;}else if (ctx > 0){// ======================= 释放RKNN模型 ===================rknn_destroy(ctx);}// ======================= 释放模型数据 ===================if (model){free(model);}auto end = std::chrono::high_resolution_clock::now();auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);std::cout << "Execution time: " << duration.count() << " milliseconds" << std::endl;return 0;
}

        感觉代码还是不优美,很多的for循环看着难受,但是已经实现了,后续再修改吧

3. 结果展示

C++的测试结果

time: 497 ms

python的测试结果

time:660ms

相关文章:

C版本的-Unet-rknn推理

1. 前言 之前就想着使用rknn的c版本的api做推理看看&#xff0c;找了一个简单的&#xff0c;那就unet吧&#xff0c;本来想着用rk的demo文件&#xff0c;但是里面是mobilenet&#xff0c;相关的函数没有&#xff0c;卡这也卡了好久&#xff0c;突然发现tengine相关的后处理&…...

Transformer的前世今生 day04(ELMO、Attention注意力机制)

ELMO 前情回顾 NNLM模型&#xff1a;主要任务是在预测下一个词&#xff0c;副产品是词向量Word2Vec模型&#xff1a;主要任务是生成词向量 CBOW&#xff1a;训练目标是根据上下文预测目标词Skip-gram&#xff1a;训练目标是根据目标词预测上下文词 ELMO模型的流程 针对Wor…...

稀碎从零算法笔记Day19-LeetCode:相交链表

题型&#xff1a;链表基本操作 链接&#xff1a;160. 相交链表 - 力扣&#xff08;LeetCode&#xff09; 来源&#xff1a;LeetCode 题目描述 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&…...

AI系统性学习03—ChatGPT开发教程

文章目录 1、OpenAI关键概念⭐️2、OpenAI SDK介绍3、OpenAI API KEY&API 认证3.1 REST API安全认证 4、OpenAI模型⭐️4.1 模型分类4.2 GPT44.3 GPT-3.54.4 Embeddings 5、OpenAI快速入门6、Function calling(函数调用)⭐️⭐️⭐️6.1 应用场景6.2 支持function calling的…...

每日一练 | 华为认证真题练习Day201

1、BGP Notification报文Error Code为2时表示open消息错误&#xff0c;其中包含如下哪些错误子码?&#xff08;多选&#xff09; A. 1-不支持的版本号 B. 2-错误的对等体AS号 C. 2-错误的对等体AS号 D. 4-错误的属性列表 2、A greate命令&#xff08;aggregate ipy4-addre…...

nginx日志统计qps

1.QPS QPS全称为Queries Per Second&#xff0c;即每秒钟处理的请求数量。对于一个高并发应用来说&#xff0c;QPS是非常重要的性能指标&#xff0c;它反映了应用处理请求的能力。在实际应用中&#xff0c;QPS的大小取决于应用的负载和应用本身的性能。 QPS req/sec 请求数/…...

9.登入页面

登入页面 在pages中新建页面login 修改代码 <template><view></view> </template><script setup></script><style lang"scss"></style>添加头像组件 官网 https://vkuviewdoc.fsq.pub/components/avatar.html …...

js封装SDK 在VUE、小程序、公众号直接调用js调用后端接口(本文以vue项目为例)

1.封装一个js文件msgSdk.js 注意&#xff1a;需要修改这个请求地址 apiServiceAddress ;(function () {if (window.msgSdk) {return}var msgSdk (function () {var m_msgSdk thisvar apiServiceAddress"http://172.12.14.5:8000"this.I_SendHTTPRequest functi…...

ideaSSM社区二手交易平台C2C模式开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 idea ssm 社区二手交易平台系统是一套完善的完整信息管理系统&#xff0c;结合SSM框架完成本系统SpringMVC spring mybatis &#xff0c;对理解JSP java编程开发语言有帮助系统采用SSM框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统具有完整的源代码…...

利用子类化技术拦截win32窗口各种消息(包括但不限于鼠标键盘消息)

创建子类化函数&#xff1a; 首先&#xff0c;您需要编写一个子类化函数&#xff0c;该函数将用于处理编辑框的消息。这个函数通常会拦截并处理您感兴趣的消息&#xff0c;比如鼠标消息。 子类化编辑框&#xff1a; 在窗口程序中找到编辑框的句柄&#xff08;HWND&#xff09;…...

HCIP—OSPF课后练习一

本实验模拟了一个企业网络场景&#xff0c;R1、R2、R3为公司总部网络的路由器&#xff0c;R4、R5分别为企业分支机构1和分支机构2的路由器&#xff0c;并且都采用双上行方式与企业总部相连。整个网络都运行OSPF协议&#xff0c;R1、R2、R3之间的链路位于区域0&#xff0c;R4与R…...

Android 13.0 kenel和frameworks中修改ram运行内存的功能实现

1.前言 在13.0的系统rom产品开发定制中,在对一些产品开发中的配置需求方面,在产品后续订单中,产品提出要提高硬件配置,但是硬件方面已经定板,项目时间比较仓促,所以 来不及对硬件重新定制,就需要软件方面在ram运行内存的容量大小方面作假,修改ram真实的大小容量,所以…...

如何将应用程序发布到 App Store

憧憬blog主页 在强者的眼中&#xff0c;没有最好&#xff0c;只有更好。我们是移动开发领域的优质创作者&#xff0c;同时也是阿里云专家博主。 ✨ 关注我们的主页&#xff0c;探索iOS开发的无限可能&#xff01; &#x1f525;我们与您分享最新的技术洞察和实战经验&#xff0…...

Python进程与线程开发

目录 multiprocessing模块 线程的开发 threading模块 setDaemon 死锁 线程间的通信 multiprocessing模块 运行python的时候&#xff0c;我们都是在创建并运行一个进程&#xff0c;(linux中一个进程可以fork一个子进程&#xff0c;并让这个子进程exec另外一个程序)。在pyt…...

【3DsMax】UVW展开——以制作牙膏盒为例

效果 步骤 1. 从网上下载牙膏盒贴图&#xff0c;我下载的贴图地址为&#xff08;牙膏盒贴图链接&#xff09; 2. 打开3DsMax&#xff0c;创建一个长方体&#xff0c;设置长宽高分别为180、45、40毫米 打开材质编辑器&#xff0c;点击漫反射后的按钮 双击“位图” 将材质赋予长…...

Mysql数据库概念与安装

目录 一、数据库概述 1、数据库的基本概念 2、数据库管理系统&#xff08;DBMS&#xff09; 2.1 数据库管理系统概念 2.2 数据库管理系统工作模式 3、数据库系统&#xff08;DBS&#xff09; 3.1 数据库系统概念 3.2 数据库系统发展史 4、关系型数据库与非关系型数据库…...

【Java - 框架 - SpringMVC】(01) SpringMVC框架的简单创建与使用,快速上手

"SpringMVC"框架的简单创建与使用&#xff0c;快速上手&#xff1b; 环境 Java版本"1.8.0_202"&#xff1b;Spring Boot版本"2.5.9"&#xff1b;Windows 11 专业版_22621.2428&#xff1b;IntelliJ IDEA 2021.1.3(Ultimate Edition)&#xff1…...

框架篇常见面试题

1、Spring框架的单例bean是线程安全的吗&#xff1f; 2、什么是AOP&#xff1f; 3、Spring的事务是如何实现的&#xff1f; 4、Spring事务失效的场景 5、SpringBean的声明周期 6、Spring的循环依赖 7、SpringMVC的执行流程 8、SpringBoot自动配置原理 9、Spring常见注解 10、My…...

【刷题】滑动窗口入门

送给大家一句话&#xff1a; 那脑袋里的智慧&#xff0c;就像打火石里的火花一样&#xff0c;不去打它是不肯出来的。——莎士比亚 滑动窗口入门 认识滑动窗口Leetcode 209. 长度最小的子数组题目描述算法思路 Leetcode 3. 无重复字符的最长子串题目描述算法思路 Leetcode 1004…...

【Python 48小时速成 3】输入与输出

在 Python 中&#xff0c;输入和输出通常通过内置函数来实现。主要的输入函数是 input()&#xff0c;用于从用户获取输入&#xff0c;而输出函数则是 print()&#xff0c;用于将结果打印到控制台。以下是简单的代码示例演示了输入和输出&#xff1a; # 输入示例 name input(&…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

对象回调初步研究

_OBJECT_TYPE结构分析 在介绍什么是对象回调前&#xff0c;首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例&#xff0c;用_OBJECT_TYPE这个结构来解析它&#xff0c;0x80处就是今天要介绍的回调链表&#xff0c;但是先不着急&#xff0c;先把目光…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...