一起学数据分析_2
写在前面:代码运行环境为jupyter,如果结果显示不出来的地方就加一个print()函数。
一、数据基本处理
缺失值处理:
import numpy as np
import pandas as pd#加载数据train.csv
df = pd.read_csv('train_chinese.csv')
df.head()# 查看数据基本信息(非空值数量、数据类型)
df.info()# 查看每个数据是否为空值,每个特征中空值总数
df.isnull().sum()# 年龄列填充缺失值为0,到一个副本
df.fillna({'年龄':0}).head(7)
df.loc[df['客舱'].isnull(), '客舱'] = 0
# 同理可以填充平均值,众数等……df.isnull().sum()# 整张表处理(缺失值处填0)
df = df.fillna(0)
df.head()
重复值(删除):
数据表里重复值其所有信息一样:(0行与1行重复)
| name | age | hobby | |
| 0 | xx | 20 | gg |
| 1 | nn | 19 | f |
| 2 | xx | 20 | gg |
# 定义一个数据表
a = pd.DataFrame({'name':['xx','dd','ff','gg','xx'],'habits':[11,22,33,44,11]})
print(a)# 查看是否有重复行(所有信息重复)
print(a.duplicated())# 处理(删除陈重复行):
a.drop_duplicates()
离散化处理(分箱):
# 将连续变量Age划分为[0,5) [5,15) [15,30) [30,50) [50,80)五个年龄段,并分别用类别变量12345表示
# 左闭右开:right=False
df['age_bins'] = pd.cut(df['年龄'], [0,15,25,35,45,80], right=False, labels = list('abcde'))df.tail()# 按百分比分段
df['age_binsPercent'] = pd.qcut(df['年龄'],[.1,.2,.3,.5,.7,.9],duplicates="drop",labels=list('12345'))
df.head()
变换文本变量:
例如性别包括男和女,用0表示男,1表示女。
# 查看有哪些类型
df['性别'].unique()
df['客舱'].unique()
df['登船港口'].unique()# 将男/女替换为0/1
# inplace默认为False,返回一个副本df['性别'].replace({"male",'female'},{0,1}, inplace = True)
df.head()# 按顺序替换为数字
from sklearn.preprocessing import LabelEncoderdf['客舱'] = LabelEncoder().fit_transform(df['客舱'])
df['登船港口'] = LabelEncoder().fit_transform(df['登船港口'])
df.head()

one-hot编码:
# one-hot编码
for column in ['登船港口','性别']:# 函数x = pd.get_dummies(df[column],prefix=column)# 拼接在一起df = pd.concat([df,x],axis=1)
df.head()

提取字符串里的某一部分:
这里用到正则表达式。里面的称呼特点是都有后缀(.)

df['title'] = df.姓名.str.extract('([A-Za-z]+)\.')
df

二、数据的横向与纵向合并
这里进行数据重构操作
横向合并:
| hobby1 | hobby2 | |
| 0 | gg | 11 |
| 1 | ff | 22 |
| 2 | gg | 33 |
| name | age | |
| 0 | xx | 20 |
| 1 | nn | 19 |
| 2 | xx | 20 |
| name | age | hobby1 | hobby2 | |
| 0 | xx | 20 | gg | 11 |
| 1 | nn | 19 | ff | 22 |
| 2 | xx | 20 | gg | 33 |
# 导入基本库
import numpy as np
import pandas as pd# 载入data中的文件
left_up = pd.read_csv('data/train-left-up.csv')
left_down = pd.read_csv('data/train-left-down.csv')right_up = pd.read_csv('data/train-right-up.csv')
right_down = pd.read_csv('data/train-right-down.csv')#将两个数据横向合并
result_up = pd.concat([left_up, right_up], axis = 1)
result_down = pd.concat([left_down , right_down], axis = 1)result_up.head()# 横向合并
up = left_up.join(right_up)
down = left_down.join(right_down)up.head()
纵向合并:
| name | age | |
| 0 | xx | 20 |
| name | age | |
| 1 | nn | 19 |
| 2 | xx | 20 |
| name | age | |
| 0 | xx | 20 |
| 1 | nn | 19 |
| 2 | xx | 20 |
# 两个数据up和down
up = left_up.join(right_up)
down = left_down.join(right_down)# 纵向合并
result1 = up.append(down)
result1.head()
# 横向连接
up2 = pd.merge(left_up,right_up, left_index=True, right_index=True)
up2.head()down2 = pd.merge(left_down,right_down, left_index=True, right_index=True)
down2.head()# 纵向合并
result2 = up.append(down)
result2.head()
result2.shaperesult2.to_csv('result.csv')
将DataFrame数据变为Series类型的数据:
data = pd.read_csv('result.csv')
data.head()# 转换
data.stack()
三、数据重构
groupby函数:
# 载入data文件中的:result.csv
text = pd.read_csv('result.csv')
text.head()# 查看性别中的0是什么:(所以女性的数据)
list(text.groupby('Sex'))[0]# 找到不同性别的数据
group = text.groupby('Sex')
# 计算这些特征数据的统计描述
print(group.describe())# 只想得到关于年龄的信息(加一个Age索引)
print(text.groupby('Sex')['Age'].describe())
# 只得到平均值
print(text.groupby('Sex')['Age'].mean())# 计算泰坦尼克号男性与女性的平均票价
# 修改索引为票价
print(text.groupby('Sex')['Fare'].mean())
# method__2
df = text['Fare'].groupby(text['Sex'])
means = df.mean()
means# 统计泰坦尼克号中男女的存活人数
survived_sex = text.groupby('Sex')['Survived'].sum()survived_sex = text['Survived'].groupby(text['Sex']).sum()
survived_sex.head()# 计算客舱不同等级的存活人数
survived_pclass = text.groupby('Pclass')['Survived'].sum()survived_pclass = text['Survived'].groupby(text['Pclass'])
survived_pclass.sum()
agg函数:
# agg里面可以使用多个方法
survived_pclass = text.groupby('Pclass')['Survived'].sum()
survived_pclass = text.groupby('Pclass').agg({'Survived':'sum'})# 性别中对费用求平均,对存活求和
text.groupby('Sex').agg({'Fare': 'mean', 'Survived': 'count'})# 重命名方便阅读,显示为‘mean_fare’
text.groupby('Sex').agg({'Fare': 'mean', 'Pclass': 'count'}).rename(columns={'Fare': 'mean_fare', 'Pclass': 'count_pclass'})
# 统计在不同等级的票中的不同年龄的船票花费的平均值
# 再加一个Pclass
text.groupby(['Pclass','Age'])['Fare'].mean().head()
# 将任务二和任务三的数据合并,并保存到sex_fare_survived.csv
# 使用index查看列索引,相同则可以合并
# 我在上面没有赋值,使用这个元素不存在
means.index
survived_sex.index
# 确定类型,使用merge不能是series
type(means)# 变为dataframe
means.to_frame()# 保存起来使用merge
result = pd.merge(means,survived_sex,on='Sex')
resultresult.to_csv('sex_fare_survived.csv')
# 得出不同年龄的总的存活人数,然后找出存活人数最多的年龄段,最后计算存活人数最高的存活率(存活人数/总人数#不同年龄的存活人数
text.groupby(['Age'])['Survived'].sum()survived_age = text['Survived'].groupby(text['Age']).sum()
survived_age.head()#找出最大值的年龄段
survived_age[survived_age.values==survived_age.max()]#首先计算总人数
_sum = text['Survived'].sum()print("sum of person:"+str(_sum))precetn =survived_age.max()/_sumprint("最大存活率:"+str(precetn))
四、数据可视化
import numpy as np
import pandas as pd
# 画图用
import matplotlib.pyplot as plttext = pd.read_csv(r'result.csv')
text.head()# 男女中生存人数分布情况
sex = text.groupby('Sex')['Survived'].sum()
# 柱状图bar
sex.plot.bar()
# 标题
plt.title('survived_count')
plt.show()

# 男女中生存人与死亡人数的比例图# unstack:旋转数据,转置
s = text.groupby(['Sex','Survived'])['Survived'].count().unstack()
# 绘制男女死亡人数柱状图
died = s[0]
died.plot.bar()
plt.title('died')

s.plot.bar()

# 提示:计算男女中死亡人数 1表示生存,0表示死亡
# 柱子叠起来,参数:stacked='True'
text.groupby(['Sex','Survived'])['Survived'].count().unstack().plot(kind='bar',stacked='True')
plt.title('survived_count')
plt.ylabel('count')

# 查看不同票价的生存死亡人数
c = text.groupby(['Fare','Survived'])['Survived'].count().unstack()
c
c.plot()

# 1表示生存,0表示死亡
# 不同仓位等级的人生存和死亡人员的分布情况
pclass_sur = text.groupby(['Pclass'])['Survived'].value_counts()
pclass_surimport seaborn as sns
sns.countplot(x="Pclass", hue="Survived", data=text)

# 不同年龄的人生存与死亡人数分布情况
# 0表示死亡人数,1生存。不同年龄的死亡人数
# 画频率直方图。分区间:bins; alpha :颜色透明度
# density密度
text.Age[text.Survived == 0].hist(bins=5, alpha = .5, density=1)
text.Age[text.Survived == 1].hist(bins=5,alpha = .5, density=1)# 密度曲线
text.Age[text.Survived == 0].plot.density()
text.Age[text.Survived == 1].plot.density()# 图例
plt.legend((0,1))
plt.xlabel('age')
# plt.ylabel('count')
plt.ylabel('density')

# 参考代码
facet = sns.FacetGrid(text, hue="Survived",aspect=3)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, text['Age'].max()))
facet.add_legend()

# 不同仓位等级的人年龄分布情况
# 查看种类
unique_placss = text.Pclass.unique()print(unique_placss)for i in unique_placss:# 密度曲线text.Age[text.Pclass == i].plot.density()
# 图例
plt.legend(unique_placss)
plt.xlabel('age')
# plt.ylabel('count')
plt.ylabel('density')

import seaborn as sns
for i in unique_placss:# 密度曲线sns.kdeplot(text.Age[text.Pclass == i])# 不同仓位等级的人年龄分布情况
text.Age[text.Pclass == 1].plot(kind='kde')
text.Age[text.Pclass == 2].plot(kind='kde')
text.Age[text.Pclass == 3].plot(kind='kde')
plt.xlabel("age")
plt.legend((1,2,3),loc="best")相关文章:
一起学数据分析_2
写在前面:代码运行环境为jupyter,如果结果显示不出来的地方就加一个print()函数。 一、数据基本处理 缺失值处理: import numpy as np import pandas as pd#加载数据train.csv df pd.read_csv(train_chinese.csv) df.head()# 查看数据基本…...
请解释Redis是什么?它有哪些主要应用场景?Redis支持哪些数据类型?并描述每种数据类型的特性和使用场景。
请解释Redis是什么?它有哪些主要应用场景? Redis是一款内存高速缓存NoSQL数据库,使用C语言编写,它支持丰富的数据类型,如String、list、set、zset、hash等,并且这些数据类型都直接支持数据的原子性操作&…...
在centos8中部署Tomcat和Jenkins
参考链接1:tomcat安装和部署jenkins_jenkins和tomcat-CSDN博客 参考链接2:--配置开机启动tomcat文件 x超详细:Centos8安装Tomcat并配置开机自动启动_centos设置tomcat开机自启-CSDN博客文章浏览阅读4.4k次,点赞4次&…...
机器学习模型—K means
文章目录 机器学习模型—K means聚类的目标k 均值原理k 均值 的实现手动实现Python 实现K 的确定 手肘法总结机器学习模型—K means K-Means 聚类是一种无监督机器学习算法,它将未标记的数据集分为不同的簇。本文旨在探讨 k 均值聚类的基本原理和工作原理以及实现。 无监督机…...
QT UI设计
在QT中添加VTK 在main函数中初始化 //VTK的初始化语句 #ifndef INITIAL_OPENGL #define INITIAL_OPENGL #include <vtkAutoInit.h> VTK_MODULE_INIT(vtkRenderingOpenGL); VTK_MODULE_INIT(vtkInteractionStyle); VTK_MODULE_INIT(vtkRenderingVolumeOpenGL); VTK_MODU…...
前端小白的学习之路(CSS3 一)
提示:CSS3 是 Cascading Style Sheets(层叠样式表)的第三个主要版本,引入了许多新的特性和增强功能,用于设计和布局网页。本章记录CSS3新增选择器,盒子模型。 目录 一、C3新增选择器 1) 属性选择器 1.[c…...
春暖花开,一起来看看2024年品牌春分海报吧!
春分(Vernal equinox)已至,春花烂漫、燕子归来、百草回芽。 今天我们要分享的是2024年品牌发布的春分节气海报合集,快来随我们一起感受这昂扬、蓬勃的春意吧! (1)泸州老窖 (2)BD…...
golang面试题总结
零、go与其他语言 0、什么是面向对象 在了解 Go 语言是不是面向对象(简称:OOP) 之前,我们必须先知道 OOP 是啥,得先给他 “下定义” 根据 Wikipedia 的定义,我们梳理出 OOP 的几个基本认知: …...
BUGKU-WEB shell
题目描述 题目截图如下: 描述: $poc "a#s#s#e#r#t";$poc_1 explode("#", $poc);$poc_2 $poc_1[0].$poc_1[1].$poc_1[2].$poc_1[3].$poc_1[4].$poc_1[5];$poc_2($_GET[s])进入场景看看:是一个空白的界面 解题思路 …...
系统重构后,对项目定制开发的兼容性问题
公司自实施产品线战略以来,基本推翻了全部旧有业务模块。后续以标准产品二次开发的模式进行项目开发。但在涉及到一些旧有系统二期、三期升级改造过程中。不可避免的需要解决旧有系统的客户定制化开发兼容性问题。也就是旧有系统定制开发的模块不能丢弃。重新开发从…...
Linux---基本操作命令之用户管理命令
1.1useradd 添加新用户 root用户:/root 普通用户:/home/ 创建的用户还是david,只是在dave文件夹下 1.2 passwd 设置密码 给用户tony设置密码: 123456 1.3 id 查看用户是否存在 查看有没有这个用户:id 名字 gid:用…...
excel 破解 保护工作簿及保护工作表
excel 破解 保护工作簿及保护工作表 对于这种 保护工作簿及保护工作表 不知道密码时,可以使用以下方法破解 保护工作簿破解 打开受保存的excel 右键点击sheet名称 —> 查看代码 复制以下代码,粘贴到代码区域 Sub 工作簿密码破解() ActiveWorkbook.…...
django-comment-migrate 模型注释的使用
django-comment-migrate 的使用 django-comment-migrate 是一个 Django 应用,用于将模型注释自动迁移到数据库表注释中。它可以帮助您保持数据库表注释与模型定义的一致性,并提高代码的可读性。 安装 要使用 django-comment-migrate,您需要…...
Python学习:列表
Python 列表概念 在Python中,列表(List)是一种有序、可变、允许重复元素的数据结构。列表使用方括号 []来表示,可以包含任意类型的元素,如整数、字符串、列表等。 Python 访问列表中的值 在Python中࿰…...
C语言每日一题—判断是否为魔方矩阵
魔方矩阵 在魔方阵中,所有的行、列和对角线都拥有相同的和。例如:17 24 1 8 15 23 5 7 14 16 4 9 24 6 13 20 22 和 3 5 710 12 19 21 3 8 1 611 18 25 2 9 写一个程序读入一个二维整型数组并…...
Java数组新手冷知识
J a v a Java Java 中,数组是对象,当你将一个数组传递给方法时,你其实是传递了数组的引用(地址),而不是数组的副本。因此,在 m m m 方法中修改了数组 n n n 的内容后,这种改变在方…...
Linux——程序地址空间
我们先来看这样一段代码: #include <stdio.h> #include <unistd.h> #include <stdlib.h>int g_val 0;int main() {pid_t id fork();if(id < 0){perror("fork");return 0;}else if(id 0){ //child,子进程肯定先跑完,也…...
Linux编程4.9 网络编程-建立连接
1、TCP的连接与断开 三次握手与四次挥手 2、服务器端并发性处理 2.1 多进程模型 一个父进程,多个子进程父进程负责等待并接受客户端连接子进程: 完成通信,接受一个客户端连接,就创建一个子进程用于通信。 2.2 多线程模型 多线程服务器是…...
威胁检测与分析--云图大师
威胁检测与分析--云图大师 当 Internet 在 1960 年代创建时,被设想为一个革命性的计算机网络,供几千名研究人员使用。创建这个快速可靠的网络使用了许多资源,其开发人员考虑的安全措施主要是为了防止军事威胁和潜在的强大入侵者。 在那个时代…...
Python基础入门 --- 7.函数
Python基础入门 第七章: 7.函数 7.1 函数多返回值 按照返回值顺序,写对应顺序的多个变量接收,变量之间用逗号分隔,支持不同数据类型return def test_return():return 1,"hello", Truex, y, z test_return() print…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...
图解JavaScript原型:原型链及其分析 | JavaScript图解
忽略该图的细节(如内存地址值没有用二进制) 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么:保存在堆中一块区域,同时在栈中有一块区域保存其在堆中的地址(也就是我们通常说的该变量指向谁&…...
