开源的OCR工具基本使用:PaddleOCR/Tesseract/CnOCR
前言
因项目需要,调研了一下目前市面上一些开源的OCR工具,支持本地部署,非调用API,主要有PaddleOCR/CnOCR/chinese_lite OCR/EasyOCR/Tesseract/chineseocr/mmocr这几款产品。
本文主要尝试了EasyOCR/CnOCR/Tesseract/PaddleOCR这四款产品。
EasyOCR
EasyOCR官方仓库:https://github.com/JaidedAI/EasyOCR
安装EasyOCR:
pip install easyocr
测试例程
import easyocr
reader = easyocr.Reader(['ch_sim','en']) # this needs to run only once to load the model into memory
result = reader.readtext('chinese.jpg')
实测EasyOCR对cuda的要求比较严格,在一个pytorch正常的环境中,运行之后会报错:
Could not load symbol cublasGetSmCountTarget from cublas64_11.dll. Error code 127
#833提到了该问题,谈及原因可能是cuda和cudnn不匹配,更换cudnn之后,报错仍未消失,遂暂置不提。
CnOCR
CnOCR官方仓库:https://github.com/breezedeus/CnOCR
CnOCR安装:
pip install cnocr
CnOCR的环境要求比较严格,其在requirements.txt
写了非常多的依赖版本号,因此如果在现有环境中直接安装,它会将Pytorch等依赖卸载重装,比较坑,使用最好先单开新环境。
测试例程:
from cnocr import CnOcrimg_fp = 'img/output_2.png'
ocr = CnOcr() # 所有参数都使用默认值
out = ocr.ocr(img_fp)
print(out)
实测在我的业务场景下,使用默认模型效果不太行。
Tesseract
Tesseract官方仓库:https://github.com/tesseract-ocr/tesseract
Tesseract是用C++进行开发的,因此如果要在python中进行使用,需要借助第三方依赖pytesseract
首先需要在本机上安装Tesseract
安装包下载地址:https://digi.bib.uni-mannheim.de/tesseract/
安装过程可参考:https://blog.csdn.net/weixin_51571728/article/details/120384909
配置完成后,在命令行输入tesseract -v
打印出版本信息则表示安装成功。
之后安装pytesseract
:
pip install pytesseract
测试例程
img_path = 'img/img_1.png'
# 添加tesseract的路径
pytesseract.pytesseract.tesseract_cmd = r'C:\Users\zxy\AppData\Local\Programs\Tesseract-OCR\tesseract.exe'
"""
image_to_string():如果识别英文或数字可以不必额外参数,如果识别其他语言则需要加上lang参数
lang='chi_sim'表示要识别的是中文简体
没有识别出来时,返回空白
"""
text = pytesseract.image_to_string(Image.open(img_path), lang='chi_sim')
print(text)
实测这个效果在我的场景也表现一般,并且tesseract对于中英文有不同的模型,泛用性不是很好。
PaddleOCR
PaddleOCR是百度旗下的产品,目前已经迭代到第四版。
PaddleOCR官方仓库:https://github.com/PaddlePaddle/PaddleOCR
PaddleOCR安装:
pip install paddleocr
测试例程:
import cv2
from paddleocr import PaddleOCRif __name__ == '__main__':ocr = PaddleOCR(use_angle_cls=True, lang="ch", ocr_version='PP-OCRv4')image_input_fullname = 'img/output_5.png'img = cv2.imread(image_input_fullname)result = ocr.ocr(img, cls=True)print(result)
根据PP-OCRv4的介绍文档,PP-OCRv4在训练时以(32,320), (48,320), (64,320)三个不同尺度上进行训练。
实测发现当文字区域小于这个范围时,效果会受到影响,因此,可以引入padding策略,即在文字区域范围周边加一圈白边,使输入模型的图片分辨率提升。
import cv2
from paddleocr import PaddleOCRdef add_padding_to_image(image, output_size=(640, 640), color=(255, 255, 255)):h, w = image.shape[:2]# 计算需要添加的padding大小delta_w = max(output_size[0] - w, 0)delta_h = max(output_size[1] - h, 0)top, bottom = delta_h // 2, delta_h - (delta_h // 2)left, right = delta_w // 2, delta_w - (delta_w // 2)# 添加paddingpadded_image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)return padded_imageif __name__ == '__main__':ocr = PaddleOCR(use_angle_cls=True, lang="ch", ocr_version='PP-OCRv4')image_input_fullname = 'img/output_5.png'img = cv2.imread(image_input_fullname)padded_img = add_padding_to_image(img)result = ocr.ocr(img, cls=True)print(result)
在我的业务场景中,PaddleOCR
的表现最好,基本能达到80%以上的识别准确率,如果还需要提升,还可以根据自己的数据再训练。
标注工具:PPOCRLabelv2
使用文档:https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/PPOCRLabel/README_ch.md
训练文档:https://aistudio.baidu.com/modelsdetail/270?modelId=270
相关文章:

开源的OCR工具基本使用:PaddleOCR/Tesseract/CnOCR
前言 因项目需要,调研了一下目前市面上一些开源的OCR工具,支持本地部署,非调用API,主要有PaddleOCR/CnOCR/chinese_lite OCR/EasyOCR/Tesseract/chineseocr/mmocr这几款产品。 本文主要尝试了EasyOCR/CnOCR/Tesseract/PaddleOCR这…...

vue3实现输入框短信验证码功能---全网始祖
组件功能分析 1.按键删除,清空当前input,并跳转prevInput & 获取焦点,按键delete,清空当前input,并跳转nextInput & 获取焦点。按键Home/End键,焦点跳转first/最后一个input输入框。ArrowLeft/ArrowRight键点击…...

[C#]winformYOLO区域检测任意形状区域绘制射线算法实现
【简单介绍】 Winform OpenCVSharp YOLO区域检测与任意形状区域射线绘制算法实现 在现代安全监控系统中,区域检测是一项至关重要的功能。通过使用Winform结合OpenCVSharp库,并结合YOLO(You Only Look Once)算法,我们…...

个人网站制作 Part 14 添加网站分析工具 | Web开发项目
文章目录 👩💻 基础Web开发练手项目系列:个人网站制作🚀 添加网站分析工具🔨使用Google Analytics🔧步骤 1: 注册Google Analytics账户🔧步骤 2: 获取跟踪代码 🔨使用Vue.js&#…...
数据按设定单位(分辨率)划分的方法
1. 问题描述 需要将使用公式计算后的float数值换算到固定间隔数轴的对应位置上的数据,比如2.186这个数据,将该数据换算到以0.25为间隔的数轴上,换算后是2.0,还是2.25呢?该方法就是解决这个问题。 2. 方法 输入&…...

Ubuntu 搭建gitlab服务器,及使用repo管理
一、GitLab安装与配置 GitLab 是一个用于仓库管理系统的开源项目,使用Git作为代码管理工具,并在此基础上搭建起来的Web服务。 1、安装Ubuntu系统(这个教程很多,就不展开了)。 2、安装gitlab社区版本,有需…...
QT(19)-QNetworkRequest
attribute(QNetworkRequest::Attribute code, const QVariant &defaultValue QVariant()) const 获取指定的请求属性。如果该属性未设置,则返回默认值。 hasRawHeader(const QByteArray &headerName) const 检查是否存在指定名称的原始请求头。 header(Q…...

基于Vue的社区旧衣回收利用系统的设计与实现
经济的高速发展使得每一个家庭的收入都获得了大幅增长,随之而来的就是各种梦想的逐步实现,首当其冲的就是各类衣服的更新换代而导致了大量旧衣物在家中的积存。为了帮助人们解决旧衣物处理的问题而以当前主流的互联网技术构建一个可于社区中实现旧衣回收…...

【网站项目】291校园疫情防控系统
🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板ÿ…...
win git filter-repo教程
git filter-repo 是一个用于过滤和清理 Git 仓库历史的工具,它可以高效地批量修改提交历史中的文件内容、删除文件、重命名文件以及进行其他历史重构操作。相较于 git filter-branch,它通常更快且更易于使用。 以下是一个基本示例,说明如何使…...

Redis相关操作高阶篇--集群搭建
Redis相关操作大全一篇全搞定-CSDN博客 Redis集群 是一个由多个主从节点群组成的分布式服务器群,它具有复制、高可用和分片特性。Redis集群不需要seninel哨兵也能完成节点移除和故障转移的功能。需要将每个节点 设置成集群模式,这种集群模式没有中心节…...

JNDI注入原理及利用IDEA漏洞复现
🍬 博主介绍👨🎓 博主介绍:大家好,我是 hacker-routing ,很高兴认识大家~ ✨主攻领域:【渗透领域】【应急响应】 【Java、PHP】 【VulnHub靶场复现】【面试分析】 🎉点赞➕评论➕收…...
大数据,或称巨量资料
大数据,或称巨量资料,指的是在传统数据处理应用软件不足以处理的大或复杂的数据集。大数据也可以定义为来自各种来源的大量非结构化或结构化数据。从学术角度而言,大数据的出现促成广泛主题的新颖研究,这也导致各种大数据统计方法…...

windows上打开redis服务闪退问题处理
方法1:在windows上面打开redis服务时,弹窗闪退可能是6379端口占用,可以用以下命令查看: netstat -aon | findstr 6379 如果端口被占用可以用这个命令解决: taskkill /f /pid 进程号 方法2: 可以使用…...

分布式锁简单实现
分布式锁 Redis分布式锁最简单的实现 想要实现分布式锁,必须要求 Redis 有「互斥」的能力,我们可以使用 SETNX 命令,这个命令表示SET if Not Exists,即如果 key 不存在,才会设置它的值,否则什么也不做。 …...

BM23 二叉树的前序遍历
public class Solution {/*** 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可** * param root TreeNode类 * return int整型一维数组*/public void preorder(List<Integer> list,TreeNode root){if(root null)return;l…...
阿里云代理仓库地址
在天朝使用jcenter、mavenCentral及google三个远程仓库,Gradle Sync会很慢,google仓库甚至需要科学上网才能访问。为了加快Gradle Sync速度,一招教你优先用 阿里云仓库服务 的仓库作为下载源。 一劳永逸之道 将本项目的gradle/init.d/init.g…...
nginx的location规则与其他功能
1. nginx中location规则: 规则描述~表示执行一个正则匹配,区分大小写~*表示执行一个正则匹配,不区分大小写^~表示普通字符匹配,如果该选项匹配,只匹配该选项,不匹配别的选项,一般用来匹配目录进…...
用汇编进行字符串匹配
用汇编进行字符串匹配 2、试编写一程序,要求比较两个字符串 STRING1 和 STRING2 所含字符是否完全相同,若相同则显示 MATCH,若不相同则显示 NO MATCH。 .model small .dataSTRING1 db hello world!,0STRING2 db hello china!,0matchString d…...

回归预测 | Matlab基于SAO-BiLSTM雪融算法优化双向长短期记忆神经网络的数据多输入单输出回归预测
回归预测 | Matlab基于SAO-BiLSTM雪融算法优化双向长短期记忆神经网络的数据多输入单输出回归预测 目录 回归预测 | Matlab基于SAO-BiLSTM雪融算法优化双向长短期记忆神经网络的数据多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于SAO-B…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...