Chain of Note-CoN增强检索增强型语言模型的鲁棒性
Enhancing Robustness in Retrieval-Augmented Language Models
检索增强型语言模型(RALMs)在大型语言模型的能力上取得了重大进步,特别是在利用外部知识源减少事实性幻觉方面。然而,检索到的信息的可靠性并不总是有保证的。检索到无关数据可能导致回答偏离正轨,甚至可能使模型忽略其固有的知识,即使它拥有足够的信息来回答查询。此外,标准的RALMs通常难以评估它们是否拥有足够的知识,包括内在知识和检索到的知识,以提供准确的答案。在知识缺乏的情况下,这些系统理想情况下应该以“未知”回应无法回答的问题。为了应对这些挑战,我们引入了CHAIN-OF-NOTING(CON),这是一种新颖的方法,旨在提高RALMs在面对噪声、无关文档和未知场景时的鲁棒性。CON的核心思想是为检索到的文档生成顺序阅读笔记,从而彻底评估它们与给定问题的相关性,并将这些信息整合以形成最终答案。我们使用ChatGPT为CON创建训练数据,随后在LLaMa-2 7B模型上进行了训练。我们在四个开放领域问答基准上的实验表明,装备了CON的RALMs显著优于标准的RALMs。特别是,CON在完全噪声检索文档的情况下,EM分数平均提高了+7.9,在实时问题超出预训练知识范围的情况下的拒绝率提高了+10.5。



在这篇论文中,我们介绍了CHAIN-OF-NOTING(CON)框架,这是一种新颖的方法论,旨在增强RALMs的鲁棒性。CON的核心概念围绕着为每个检索到的文档生成顺序阅读笔记。这个过程允许深入评估文档与提出问题的相关性,并帮助合成这些信息以构建最终的答案。我们使用了ChatGPT来生成CON的初始训练数据,然后使用LLaMa-2 7B模型进一步优化这些数据。我们在各种开放领域问答基准上的测试表明,集成了CON的RALMs在性能上显著超过了传统的RALMs。

相关文章:
Chain of Note-CoN增强检索增强型语言模型的鲁棒性
Enhancing Robustness in Retrieval-Augmented Language Models 检索增强型语言模型(RALMs)在大型语言模型的能力上取得了重大进步,特别是在利用外部知识源减少事实性幻觉方面。然而,检索到的信息的可靠性并不总是有保证的。检索…...
Uniapp 的 uni.request传参后端
以下是使用Uniapp的交互数据的两种方式 后端使用Parameter接收数据 后端使用RequestBody接收Json格式数据 后端: CrossOrigin RestController RequestMapping("/user") public class UserController {GetMapping("/login")public String lo…...
数据可视化-ECharts Html项目实战(5)
在之前的文章中,我们学习了如何设置滚动图例,工具箱设置和插入图片。想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下你宝贵的点赞,谢谢 数据可视化-ECharts…...
C++学习之旅(二)运行四个小项目 (Ubuntu使用Vscode)
如果是c语言学的比较好的同学 可以直接跟着代码敲一遍,代码附有详细语法介绍,不可错过 一,猜数字游戏 #include <iostream> #include <cstdlib> #include <ctime>int main() {srand(static_cast<unsigned int>(tim…...
数据分析与挖掘
数据起源: 规模庞大,结构复杂,难以通过现有商业工具和技术在可容忍的时间内获取、管理和处理的数据集。具有5V特性:数量(Volume):数据量大、多样性(Variety):…...
Maxwell监听mysql的binlog日志变化写入kafka消费者
一. 环境: maxwell:v1.29.2 (从1.30开始maxwell停止了对java8的使用,改为为11) maxwell1.29.2这个版本对mysql8.0以后的缺少utf8mb3字符的解码问题,需要对原码中加上一个部分内容 :具体也给大家做了总结 : 关于v1.…...
Kafka系列之:Kafka Connect REST API
Kafka系列之:Kafka Connect REST API 由于 Kafka Connect 旨在作为服务运行,因此它还提供了用于管理连接器的 REST API。此 REST API 可在独立模式和分布式模式下使用。可以使用侦听器配置选项来配置 REST API 服务器。该字段应包含以下格式的侦听器列表: protocol://host:p…...
DC-4靶机
一.环境搭建 1.下载地址 靶场下载地址:https://download.vulnhub.com/dc/DC-4.zip 下载不下来用迅雷下载 2.虚拟机配置 切换为nat模式 开启靶机,遇到所有的错误直接点重试或者是,开启后呈现为下图即可 二.开始渗透 1.信息收集 老规矩,…...
ideaSSM 高校公寓交流员管理系统bootstrap开发mysql数据库web结构java编程计算机网页源码maven项目
一、源码特点 idea 开发 SSM 高校公寓交流管理系统是一套完善的信息管理系统,结合SSM框架和bootstrap完成本系统,对理解JSP java编程开发语言有帮助系统采用SSM框架(MVC模式开发),系统具有完整的源代码和数据库&…...
Android studio添加阿里云仓库
在工程的settings.gradle中添加 repositories { google() jcenter() mavenCentral() maven { url https://jitpack.io } //阿里云镜像 maven { url https://maven.aliyun.com/repository/google } maven { url https:…...
每天一个数据分析题(二百二十)
在集成学习的GBDT算法中,每次训练新的决策树的目的是( )? A. 预测原始数据的标签 B. 预测上一个模型的残差 C. 降低模型的偏差 D. 降低模型的方差 题目来源于CDA模拟题库 点击此处获取答案...
Centos上安装Harbor并使用
harbor的安装与使用 Harbor介绍安装前的准备工作为Harbor自签发证书安装Harbor安装docker开启包转发功能和修改内核参数安装harbor扩展 Harbor 图像化界面使用说明测试使用harbor私有镜像仓库从harbor仓库下载镜像 Harbor介绍 容器应用的开发和运行离不开可靠的 镜像管理&…...
工作需求,Vue实现登录
加油,新时代打工人! vue 2.x Element UI <template><div class"body" :style"{background-image: url(${require(/assets/images/login.png)})}"><el-form :rules"rules" ref"loginForm" :mode…...
【生产力】Mac 窗口布局工具 Magnet
Magnet 是一款为Mac操作系统设计的实用工具,旨在帮助用户更加方便地管理和组织他们的窗口布局。通过使用Magnet,用户可以轻松地将应用程序窗口拖放到屏幕的各个部分,从而实现窗口的自动排列和大小调整。这款工具特别适合需要同时处理多个应用…...
Linux的相关指令总结
Linux的基本命令 Linux指令是Linux操作系统的核心组成部分,它们为用户和管理员提供了与系统进行交互和管理的强大工具。这些指令涵盖了从基本的文件操作到复杂的系统配置和管理的各个方面。 ls指令 功能:用于列出指定目录中的文件和子目录名称。语法&am…...
HTTPS 加密原理
HTTPS 加密原理 HTTPS 加密原理常见的加密方法单向加密对称加密非对称加密 为什么需要加密?加密流程演变对称加密非对称加密非对称加密对称加密 存在问题解决方式数字证书生成方式 整体流程 HTTPS 加密原理 常见的加密方法 单向加密 也称为不可逆加密,…...
【数据挖掘】实验4:数据探索
实验4:数据探索 一:实验目的与要求 1:熟悉和掌握数据探索,学习数据质量分类、数据特征分析和R语言的主要数据探索函数。 二:实验内容 1:数据质量分析 2:统计量分析 3:贡献度分析…...
PTA后缀式求值(整型版)
作者 周强 单位 青岛大学 我们人类习惯于书写“中缀式”,如 3 5 * 2 ,其值为13。 (p.s. 为什么人类习惯中缀式呢?是因为中缀式比后缀式好用么?) 而计算机更加习惯“后缀式”(也叫“逆波兰式”ÿ…...
FPGA与以太网相关接口知识
一:一般硬件架构;(对于1000m网一般都使用普通io口,普通管脚能跑800M(正点技术说的))) 1:FPGA普通管脚——phy芯片(pcspma)——rg45 2:FPGA(GT)光口(利用fpga的GT,直接节约了phy芯片…...
使用git+ssh访问github,避免下载资源失败
一、创建github账户之后,记住注册邮箱和账户名 我的邮箱:yuanyan23mails.ucas.ac.cn 账户名:thekingofjumpshoot 下边的相关位置需要用自己的邮箱和用户名替代 二、输入本地生成秘钥和公钥命令,并且生成公私钥对 ssh-keygen …...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
