冒泡排序 快速排序 归并排序 其他排序
书接上回..
目录
2.3 交换排序
2.3.1冒泡排序
2.3.2 快速排序
快速排序的优化:
快速排序非递归
2.4 归并排序
基本思想
归并排序非递归
海量数据的排序问题
排序算法时间空间复杂度和稳定性总结
四. 其他非基于比较排序 (了解)
2.3 交换排序
基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置,交换排序的特
点是:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。
2.3.1冒泡排序
遍历数组, 将最大值移动到最后, 再次遍历, 将第二大值移动到倒数第二个位置, 以此类推
思路:
代码:
- 一共需要遍历arr.length-1趟, 才能将所有的元素变有序
- 第1趟在遍历时, 需要交换arr.length-1次, 第2趟在编历时, 需要交换arr.length-1-1次...
- 我们可以优化一下代码, 即只需要交换arr.length-1-i次即可, i从0开始
- 进一步优化, 如果一趟遍历下来, .没有任何的交换进行, 则说明数组已经有序, 则不需再遍历, 直接return即可
public static void bubbleSort(int[] arr){for (int i = 0; i < arr.length-1; i++) {int flag = 0;for (int j = 0; j < arr.length-1-i; j++) {if(arr[j]>arr[j+1]){swap(arr,j,j+1);flag = 1;}}if(flag == 0){return;}}}
【冒泡排序的特性总结】
- 冒泡排序是一种非常容易理解的排序
- 时间复杂度:O(N^2)
- 空间复杂度:O(1)
- 稳定性:稳定
2.3.2 快速排序
快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
思路:
- 对[left,right]区间进行排序
- partition()方法的作用: 找到一个基准值pivot, 并将小于基准值的数都放在其左边, 大于基准值的数都放在其右边, 即将划分成以pivot边界的[left,pivot-1],[pivot+1,right]两部分
- 递归基准值的左边, 即[left,pivot-1]再次进行partition, 直到left>= right
- 递归基准值的右边, 即[pivot+1,right]再次进行partition, 直到left>= right
- 全部完成后数组就会变有序
代码:(非最终)
public static void quickSort(int[] arr){quick(arr,0,arr.length-1);}private static void quick(int[] arr,int left,int right){if(left >= right){return ;}int pivot = partition(arr,left,right);quick(arr,left,pivot-1);quick(arr,pivot+1,right);}
将区间按照基准值划分为左右两半部分的常见方式有:
1. Hoare法
假设数组的第一个数就是基准值, 运用交换的思想
思路:
- 将left赋给pivot, 创建变量i = left; j = right,用来遍历数组
- i从前面遍历, 找到比arr[pivot]大的数, 停下来, j从后面遍历,找到比arr[pivot]小的数, 停下来, 交换这两个下标的值, 这样就把比arr[pivot]小的数放前面, 比arr[pivot]大的数放后面
- 继续遍历, 直到i>=j, 停止
- 此时交换i和pivot的值,返回i下标, 即基准值的下标
代码:
private static int partition(int[] arr,int left,int right){int i = left;int j = right;int pivot = left;while(i < j){while(i < j && arr[j] >= arr[pivot]){j--;}while(i < j && arr[i] <= arr[pivot]){i++;}swap(arr,i,j);}swap(arr,i,pivot);return i;}
思考:
1. 上述里层while循环, 判断条件一定是>= <= 吗?不取等行不行?
答案: 不行, 因为如果不加等号, 左右两边都是相同的数字时, 进不去里层循环, 外层循环死循环
2. 以左边作为基准时, 为什么一定要从右边先开始找, 而不是左边?
答案: 如果从左边开始找, 那么左右相遇的地方可能是比基准值大的数字, 那么进行交换后, 就不满足基准值左边的数都小于右边, 反之, 如果从右边开始找, 那么左右相遇的地方一定是比基准值小的数字, 这时与左边的基准值进行交换, 小的数换到左边, 满足基准值左边的数都小于右边
2. 挖坑法
假设数组的第一个数就是基准值, 运用覆盖的思想
思路:
- 将数组第一个下标的值存起来给pivot,挖坑pivot的位置, 创建变量i = left; j = right,用来遍历数组
- i从前面遍历, 找到比arr[pivot]大的数, 停下来, 将arr[j]放在arr[i]的位置, 此时i = 0, 在arr[j]的位置挖坑,j从后面遍历,找到比arr[pivot]小的数, 停下来,将arr[i]放在arr[j]的位置,在arr[i]的位置挖坑
- 继续遍历, 直到i >= j, 停止
- 最后放pivot的值放在arr[i]这个坑中即可, 返回基准值所在的下标i
代码:
private static int partition(int[] arr,int left,int right){int i = left;int j = right;int pivot = arr[left];while(i < j){while(i<j && arr[j] >= pivot){j--;}arr[i] = arr[j];while(i<j && arr[i] <= pivot){i++;}arr[j] = arr[i];}arr[i] = pivot;return i;}
3. 前后指针(了解)
private static int partition(int[] array, int left, int right) {
int prev = left ;
int cur = left+1;
while (cur <= right) {
if(array[cur] < array[left] && array[++prev] != array[cur]) {
swap(array,cur,prev);
}
cur++;
}
swap(array,prev,left);
return prev;
}
快速排序的优化:
1. 三数取中法选key
拿到left = 0, right = arr.length-1, 和mid为中间下标, 可以表示为mid = left + ((right-left)>>1), 比较这三个数的大小, 将中间大小的数字作为基准值, 这样可以保证基准值的左右两边都有数据, 减小时间复杂度
private static int middleNum(int[] arr,int left,int right){int mid = left + ((right-left)>>1);if (arr[left] < arr[right]){if(arr[mid] < arr[left]){return left;}else if(arr[mid] > arr[right]){return right;}else{return mid;}}else{if(arr[mid] < arr[right]){return right;}else if(arr[mid] > arr[left]){return left;}else{return mid;}}}private static void quick(int[] arr,int left,int right){if(left >= right){return ;}//优化1int index = middleNum(arr,left,right);swap(arr,index,left);int pivot = partition(arr,left,right);quick(arr,left,pivot-1);quick(arr,pivot+1,right);}
2. 递归到小的子区间时,可以考虑使用插入排序
当区间变小时, 再使用递归的方法进行排序, 会浪费时间, 所以当区间小于一个数(假设10)时, 就采用直接插入排序, 提高效率
private static void quick(int[] arr,int left,int right){if(left >= right){return ;}//优化1int index = middleNum(arr,left,right);swap(arr,index,left);//优化2if(right-left+1 <= 10 ){insertSort2(arr,left,right);return;}int pivot = partition(arr,left,right);quick(arr,left,pivot-1);quick(arr,pivot+1,right);}public static void insertSort2(int[] arr,int left,int right){for (int i = 1 + left; i <=right ; i++) {int tmp = arr[i];int j = i-1;for ( ; j >= 0; j--) {if(arr[j] > tmp){arr[j+1] = arr[j];}else{//arr[j+1] = tmp;break;}}arr[j+1] = tmp;}}
快速排序非递归
思路:
- 使用partition方法找到基准值的下标
- 判断如果基准值的左边不止有一个数据, 即pivot-1 > left, 则需要继续划分, 则将这一划分的左右坐标分别压入栈中, 注意在出栈时先右后左
代码:
public static void quickSortNorR(int[] arr){int left = 0;int right = arr.length-1;int pivot = partition(arr,left,right);Stack<Integer> stack = new Stack<>();if(pivot - 1 > left){stack.push(left);stack.push(pivot - 1);}if(pivot + 1 < right){stack.push(pivot+1);stack.push(right);}while(!stack.isEmpty()){right = stack.pop();left = stack.pop();pivot = partition(arr,left,right);if(pivot - 1 > left){stack.push(left);stack.push(pivot - 1);}if(pivot + 1 < right){stack.push(pivot+1);stack.push(right);}}}
快速排序总结
- 时间复杂度:O(N*logN)
- 空间复杂度:O(logN)
- 稳定性:不稳定
- 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序
2.4 归并排序
基本思想

思路:
- 归并排序分为两部分, 分解和合并, 分解我们运用到的思路是递归, 合并我运用到的思路是用新数组存储有序序列, 再赋值给原数组
- 分解: 找到数组的中间下标mid, 左下标left, 右下标right, 将数组分解成[left, mid] 和[mid+1,right], 递归分解, 直到只剩下一个元素
- 合并:将两组数据的头和尾分别定义成s1e1 和s2e2, s1和s2依次进行比较, 小的就存放在新数组里, 并++,直到有一个数组的s1 > s2, 结束比较, 直接将另一组数据剩下的加到新数组的后面, 最后将新数组赋值给原数组, 注意: 新数组和原数组的对应关系是:arr[i+left] = tmpArr[i]
代码:public static void mergeSort(int[] arr){mergeFunc(arr,0,arr.length-1);}private static void mergeFunc(int[] arr,int left,int right){if(left >= right){return ;}int mid = left+((right-left)>>1);mergeFunc(arr,left,mid);mergeFunc(arr,mid+1,right);merge(arr,left,mid,right);}private static void merge(int[] arr, int left,int mid,int right){int s1 = left;int s2 = mid +1;int e1 = mid;int e2 = right;int[] tmpArr = new int[right-left+1];int k = 0;while(s1 <= e1 && s2 <= e2){if(arr[s1] > arr[s2]){tmpArr[k++] = arr[s2++];}else{tmpArr[k++] = arr[s1++];}}while(s1 <= e1){tmpArr[k++] = arr[s1++];}while(s2 <= e2){tmpArr[k++] = arr[s2++];}for (int i = 0; i < k; i++) {arr[i+left] = tmpArr[i];}}
归并排序非递归
思路:
- 设gap, 表示几个元素为一半, 归并是将一组分成两半进行比较的,比较的事交给merge方法, 我们只需要知道怎么分组, 并找好下一组的位置, 每次gap*=2, 当gap >arr.length时, 说明已经全部有序了
- 用 i 来遍历数组找位置, i=0 时, 那么第一组的left就是0, mid就是left+gap-1, right就是mid+gap, 注意:为了防止mid和right越界, 当mid right>= arr.length时, 说明超过了数组的大小, 只需将他们设置成最后一个元素即可
- i在找下一组时, i应该等于i+2*gap, 因为一组的长度为2*gap
代码:
public static void mergeSortNorR(int[] arr){int gap = 1;while(gap < arr.length){for (int i = 0; i < arr.length; i=i+2*gap) {int left = i;int mid = left + gap -1;if(mid >= arr.length){mid = arr.length-1;}int right = mid +gap;if(right >= arr.length){right = arr.length-1;}merge(arr,left,mid,right);}gap *= 2;}}
归并排序总结
- 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。
- 时间复杂度:O(N*logN)
- 空间复杂度:O(N)
- 稳定性:稳定
海量数据的排序问题
排序算法时间空间复杂度和稳定性总结
四. 其他非基于比较排序 (了解)
1. 计数排序
- 统计相同元素出现次数
- 根据统计的结果将序列回收到原来的序列中

- 计数排序在数据范围集中时,效率很高,但是适用范围及场景有限。
- 时间复杂度:O(MAX(N,范围))
- 空间复杂度:O(范围)
- 稳定性:稳定
2. 基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。
步骤:
- 先比较个位数字, 依次放在有顺序的10个队列中, 分别代表数字0~9, 然后从第一个队列开始出队
- 再按照十位数字比较, 继续放入, 再出队, 循环最大数字的位数次结束
3. 桶排序
思想:划分多个范围相同的区间,每个子区间自排序,最后合并。
相关文章:

冒泡排序 快速排序 归并排序 其他排序
书接上回.. 目录 2.3 交换排序 2.3.1冒泡排序 2.3.2 快速排序 快速排序的优化: 快速排序非递归 2.4 归并排序 基本思想 归并排序非递归 海量数据的排序问题 排序算法时间空间复杂度和稳定性总结 四. 其他非基于比较排序 (了解) 2.3 交换排序 基本思想:…...

阿里云服务器安装MySQL(宝塔面板)
只写关键步骤 1. 创建一个云服务器实例 2 修改密码,登录服务器 3. 安装宝塔面板 进入https://www.bt.cn/new/index.html 进入宝塔面板地址 4. 安装Mysql 5. 创建数据库(可导入数据库) 6. 测试连接数据库 打开Navicat(或其他数据…...
设计模式|发布-订阅模式(Publish-Subscribe Pattern)
文章目录 初识发布-订阅模式发布-订阅模式的关键概念发布订阅模式的优缺点示例代码(使用 Java 实现)有哪些知名框架使用了发布-订阅模式常见面试题 初识发布-订阅模式 发布-订阅模式(Publish-Subscribe Pattern)是一种软件架构设…...
根据疾病名生成病例prompt
prompt 请根据疾病名:" disease_name " 为我生成一份病历。下面是病历内容的要求:病例应严格包含如下几项: 性别,年龄,疾病名(必须是" disease_name "),主诉ÿ…...

HarmonyOS网格布局:List组件和Grid组件的使用
简介 在我们常用的手机应用中,经常会见到一些数据列表,如设置页面、通讯录、商品列表等。下图中两个页面都包含列表,“首页”页面中包含两个网格布局,“商城”页面中包含一个商品列表。 上图中的列表中都包含一系列相同宽度的列表…...

NASA数据集—— 1984-2019年湖泊生长季绿色表面反射率趋势数据集
ABoVE: Lake Growing Season Green Surface Reflectance Trends, AK and Canada, 1984-2019 简介 该数据集提供了1984年至2019年期间ABoVE扩展研究域内472,890个湖泊的大地遥感卫星绿色表面反射率年度时间序列和衍生的年度生长季节(6月和7月)趋势。反射…...

DMA知识
提示:文章 文章目录 前言一、背景二、 2.1 2.2 总结 前言 前期疑问: 本文目标: 一、背景 2024年3月26日23:32:43 今天看了DMA存储器到存储器的DMA传输和存储器到外设的DMA实验,在keil仿真可以看到效果。还没有在protues和开发…...

Linux 系统 docker快速搭建PHP环境
PHP安装 ############################################################################# 1、直接拉取官方镜像 查找Docker Hub上的php镜像 docker search php 直接拉取官方镜像 docker run --name myphp --restartalways --network lnmp -d php:7.1-fpm 2、创建php容…...
逻辑设计问题 -- 设计一个函数
文章目录 设计一个函数函数接口规格说明运算符或者非运算符自由或成员运算符虚函数或非虚函数纯虚函数或者非纯虚函数静态或者非静态成员函数const 成员函数或者非const成员函数公共的、保护的或者私有的成员函数通过值、引用或者指针返回返回const 或者非const可选参数或者必要…...

RHCE 补充:判断服务状态
内容补充:判断服务状态 systemctl 命令 系统控制管理命令工具 常用指令 1、启动 systemctl start 程序名 若要启动多个程序名,使用空格隔开,下同 2、重启:类似主机先断电再启动的一个状态 systemctl restart 程序名 3、停…...

计算机网络:物理层 - 编码与调制
计算机网络:物理层 - 编码与调制 基本概念编码不归零制编码归零制编码曼彻斯特编码差分曼彻斯特编码 调制调幅调频调相混合调制 基本概念 在计算机网络中,计算机需要处理和传输用户的文字、图片、音频和视频,他们可以统称为消息数据…...

《量子计算:揭开未来科技新篇章》
随着科技的不断发展,量子计算作为一项颠覆性的技术逐渐走进人们的视野,引发了广泛的关注和探讨。本文将围绕量子计算的技术进展、技术原理、行业应用案例、未来趋势预测以及学习路线等方向,深入探讨这一领域的前沿动态和未来发展趋势。 量子…...

机器人机械手加装SycoTec 4060 ER-S电主轴高精密铣削加工
随着科技的不断发展,机器人技术正逐渐渗透到各个领域,展现出前所未有的潜力和应用价值。作为机器人技术的核心组成部分之一,机器人机械手以其高精度、高效率和高稳定性的优势,在机械加工、装配、检测等领域中发挥着举足轻重的作用…...
docker 共享内存不足问题
在启动容器时增加共享内存大小: 您可以通过在docker run命令中添加--shm-size参数来指定更大的共享内存大小。例如,如果您需要32GB的共享内存,可以这样做: docker run --shm-size32g -it your-docker-image 这里的your-docker-im…...
英语口语 3.27
keep It straight :竖着放 turn it to the side:横过来放 i get my shit done:shit(everything)任何事情 我都会去做的 that‘s what’s up 可以的可以的 thats cool zodiac sign :生肖 座 i sense that :我感受到了 talent”艺人 influencer:有影响力的人 …...

pytest之统一接口请求封装
pytest之统一接口请求封装 pytest的requests_util.pyrequests_util.py 接口自动化测试框架的封装yaml文件如何实现接口关联封装yaml文件如何实现动态参数的处理yaml文件如何实现文件上传有参数化时候,怎么实现断言yaml的数据量大怎么处理接口自动化框架的扩展&#…...

使用npm仓库的优先级以及.npmrc配置文件的使用
使用npm仓库的优先级以及.npmrc配置文件的使用 概念如何设置 registry(包管理仓库)1. 设置项目配置文件2. 设置用户配置文件3. 设置全局配置文件4. .npmrc文件可以配置的常见选项 概念 npm(Node Package Manager)是一个Node.js的…...

Netty源码剖析——ChannelHandlerContext 篇(三十七)
ChannelHandlerContext 作用及设计 ChannelHandlerContext 继承了出站方法调用接口和入站方法调用接口 ChannelOutboundInvoker 和 ChannelInboundInvoker 部分源码 这两个invoker就是针对入站或出站方法来的,就是在入站或出站 handler 的外层再包装一层,…...
5.92 BCC工具之bitesize.py解读
一,工具简介 bitesize工具按进程名称显示请求块大小的I/O分布。 它通过监视磁盘上的读取和写入操作,记录每个操作的大小。再将跟踪到的 I/O 操作按照大小分组,通常是以 2 的幂次方(如 4K、8K、16K 等)进行划分,并统计每个大小范围内的 I/O 操作数量。 二,代码示例 #…...

jupyter notebook导出含中文的pdf(LaTex安装和Pandoc、MiKTex安装)
用jupyter notebook导出pdf时,因为报错信息,需要用到Tex nbconvert failed: xelatex not found on PATH, if you have not installed xelatex you may need to do so. Find further instructions at https://nbconvert.readthedocs.io/en/latest/install…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...