当前位置: 首页 > news >正文

编译安装飞桨fastdeploy@FreeBSD(失败)

FastDeploy是一款全场景易用灵活极致高效的AI推理部署工具, 支持云边端部署。提供超过 🔥160+ TextVisionSpeech跨模态模型📦开箱即用的部署体验,并实现🔚端到端的推理性能优化。包括 物体检测、字符识别(OCR)、人脸、人像扣图、多目标跟踪系统、NLP、Stable Diffusion文图生成、TTS 等几十种任务场景,满足开发者多场景、多硬件、多平台的产业部署需求。官网:GitHub - PaddlePaddle/FastDeploy: ⚡️An Easy-to-use and Fast Deep Learning Model Deployment Toolkit for ☁️Cloud 📱Mobile and 📹Edge. Including Image, Video, Text and Audio 20+ main stream scenarios and 150+ SOTA models with end-to-end optimization, multi-platform and multi-framework support.

遗憾的是在FreeBSD下没有装成。

发现fastdeploy需要opencv-python,所以花了很大的精力来安装,但是也没有装上。opencv可以用Pillow代替,但是后面还是碰到没法解决的问题。

编译安装opencv-python

编译安装没完成,估计还是用pkg install opencv-python装成的。

需要安装opencv-pyhton

安装opencv-python

pip install opencv-python,但是装不上,所以选择源代码编译安装

先安装pip install scikit-build

然后下载opencv-python源代码

可以用git clone https://github.com/opencv/opencv-python

也可以在pip安装的时候拿到下载链接,然后wget下载

https://mirror.baidu.com/pypi/packages/25/72/da7c69a3542071bf1e8f65336721b8b2659194425438d988f79bc14ed9cc/opencv-python-4.9.0.80.tar.gz

解压源代码:

tar -xzvf opencv-python-4.9.0.80.tar.gz

设置编译多线程:

set MAX_JOBS=8
export MAX_JOBS=8

开始编译

进入 opencv-python-4.9.0.80 目录并编译

cd  opencv-python-4.9.0.80
python setup.py install 

编译失败,见后面的记录。

安装FastDeploy

标准流程是cpu安装:pip install numpy opencv-python fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html

我们使用命令

pip install fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html

这样跳过了opencv部分,先把fastdeploy装好了。

推理

Python 推理示例

准备模型和图片

wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg

 python推理

# GPU/TensorRT部署参考 examples/vision/detection/paddledetection/python
import cv2
import fastdeploy.vision as visionmodel = vision.detection.PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel","ppyoloe_crn_l_300e_coco/model.pdiparams","ppyoloe_crn_l_300e_coco/infer_cfg.yml")
im = cv2.imread("000000014439.jpg")
result = model.predict(im)
print(result)vis_im = vision.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)

opencv-python这里实在装不上, 用Pillow代替,但是报错:

# GPU/TensorRT部署参考 examples/vision/detection/paddledetection/python
# import cv2
from PIL import Image
import fastdeploy.vision as visionmodel = vision.detection.PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel","ppyoloe_crn_l_300e_coco/model.pdiparams","ppyoloe_crn_l_300e_coco/infer_cfg.yml")
# im = cv2.imread("000000014439.jpg")
im =   Image.open("000000014439.jpg")
result = model.predict(im)
print(result)vis_im = vision.vis_detection(im, result, score_threshold=0.5)
# cv2.imwrite("vis_image.jpg", vis_im)
vis_im.save("vis_image.jpg")

结论:python推理失败

C++推理

预编译环境

Release版本

平台文件说明
Linux x64fastdeploy-linux-x64-1.0.7.tgzg++ 8.2编译产出
Windows x64fastdeploy-win-x64-1.0.7.zipVisual Studio 16 2019编译产出
Mac OSX x64fastdeploy-osx-x86_64-1.0.7.tgzclang++ 10.0.0编译产出

没有FreeBSD的,所以我们要自己编译。

进入FastDeploy目录进行编译:

cd FastDeploy
mkdri build && cd build 
cmake ..
make 

可以根据自己cpu的核数x,加上-j 2*x参数 ,如4核cpu  make -j 8

老规矩,编译好之后加入PATH路径,而不是放入/usr/bin目录,以免污染整个系统。

发现目录结构远比想像的要复杂,还是用make install 安装吧 。切换root账户,

cmake .. -DCMAKE_INSTALL_PREFIX=/home/xxx/work/fd
make -j 8 
make install 

最终使用的语句是在root账户下,在FastDeploy目录执行:

mkdir build
cd build/
cmake .. -DCMAKE_INSTALL_PREFIX=/home/skywalk/work/fd -DWITH_CAPI=ON
make -j 8
make install # 第一次运行报错,所以把下面的patch库挪到install
mkdir third_libs/install
cp -rf third_libs/patchelf/ third_libs/install/
make install

这里参数漏掉一个D ,加上之后编译不过去,也是就是DWITH_CAPI=ON编译不过去,ENABLE_PADDLE_BACKEND和ENABLE_ORT_BACKEND也都过不去。

把参数全删掉可以过去,但那样就没有用了啊!

结论:编译环境失败

准备图片

wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
tar xvf ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg

推理

源码

// GPU/TensorRT部署参考 examples/vision/detection/paddledetection/cpp
#include "fastdeploy/vision.h"int main(int argc, char* argv[]) {namespace vision = fastdeploy::vision;auto model = vision::detection::PPYOLOE("ppyoloe_crn_l_300e_coco/model.pdmodel","ppyoloe_crn_l_300e_coco/model.pdiparams","ppyoloe_crn_l_300e_coco/infer_cfg.yml");auto im = cv::imread("000000014439.jpg");vision::DetectionResult res;model.Predict(im, &res);auto vis_im = vision::VisDetection(im, res, 0.5);cv::imwrite("vis_image.jpg", vis_im);return 0;
}

把文件保存为infer_demo.c, 用gcc编译报错。

到FastDeploy/examples/runtime/cpp 目录,编译

mkdir build && cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=/home/skywalk/work/fd
make -j 8

(在没有任何参数的编译出来的环境下)编译出来一个runtime_demo文件,执行直接崩了。

结论

目前fastdeploy在FreeBSD没有调通。当然在linux下是极其好用的。

调试

pip install opencv-python报错

搞不定,下载源代码手动编译安装python setup.py install

编译时报错 No module named 'skbuild'

  File "/usr/home/skywalk/work/opencv-python-headless-4.9.0.80/setup.py", line 10, in <module>
    from skbuild import cmaker, setup
ModuleNotFoundError: No module named 'skbuild'

pip install scikit-build

编译安装时报错

[ 31%] Building CXX object modules/dnn/CMakeFiles/opencv_dnn.dir/misc/caffe/opencv-caffe.pb.cc.o
In file included from /usr/home/skywalk/work/opencv-python-4.9.0.80/opencv/modules/dnn/misc/caffe/opencv-caffe.pb.cc:4:
In file included from /usr/home/skywalk/work/opencv-python-4.9.0.80/opencv/modules/dnn/misc/caffe/opencv-caffe.pb.h:10:
/usr/local/include/google/protobuf/port_def.inc:210:1: error: static_assert failed due to requirement '201103L >= 201402L' "Protobuf only supports C++14 and newer."
static_assert(PROTOBUF_CPLUSPLUS_MIN(201402L), "Protobuf only supports C++14 and newer.");
^             ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from /usr/home/skywalk/work/opencv-python-4.9.0.80/opencv/modules/dnn/misc/caffe/opencv-caffe.pb.cc:4:
/usr/home/skywalk/work/opencv-python-4.9.0.80/opencv/modules/dnn/misc/caffe/opencv-caffe.pb.h:17:2: error: This file was generated by an older version of protoc which is
#error This file was generated by an older version of protoc which is
 ^
/usr/home/skywalk/work/opencv-python-4.9.0.80/opencv/modules/dnn/misc/caffe/opencv-caffe.pb.h:18:2: error: incompatible with your Protocol Buffer headers. Please
#error incompatible with your Protocol Buffer headers. Please
  pip install protobuf==3.20试试

不行,用opencv-python4.4.

到openv目录 手工cmke .. make -j 报错

/usr/local/include/absl/strings/internal/has_absl_stringify.h:46:8: error: no template named 'enable_if_t' in namespace 'std'; did you mean simply 'enable_if_t'?
    T, std::enable_if_t<std::is_void<decltype(AbslStringify(
       ^~~~~
[  2%] Built target gen_opencv_python_source
/usr/local/include/absl/meta/type_traits.h:656:1: note: 'enable_if_t' declared here
using enable_if_t = typename std::enable_if<B, T>::type;
^
[  2%] Building CXX object 3rdparty/protobuf/CMakeFiles/libprotobuf.dir/src/google/protobuf/generated_message_table_driven_lite.cc.o
In file included from /home/skywalk/work/opencv-python-4.4.0.42/opencv/3rdparty/protobuf/src/google/protobuf/arena.cc:31:
In file included from /usr/local/include/google/protobuf/arena.h:53:
In file included from /usr/local/include/google/protobuf/arena_align.h:85:
/usr/local/include/google/protobuf/port_def.inc:210:1: error: static_assert failed due to requirement '201103L >= 201402L' "Protobuf only supports C++14 and newer."
static_assert(PROTOBUF_CPLUSPLUS_MIN(201402L), "Protobuf only supports C++14 and newer.");

尝试升级gcc:pkg upgrade gcc,但是也只升级到gcc13 还是不到14

尝试使用opencv-python3.4.17版本

报错

[ 45%] Building CXX object modules/dnn/CMakeFiles/opencv_dnn.dir/misc/caffe/opencv-caffe.pb.cc.o
In file included from /usr/home/skywalk/work/opencv-python-3.4.17.63/opencv/modules/dnn/misc/caffe/opencv-caffe.pb.cc:4:
/usr/home/skywalk/work/opencv-python-3.4.17.63/opencv/modules/dnn/misc/caffe/opencv-caffe.pb.h:17:2: error: This file was generated by an older version of protoc which is
#error This file was generated by an older version of protoc which is
 ^
/usr/home/skywalk/work/opencv-python-3.4.17.63/opencv/modules/dnn/misc/caffe/opencv-caffe.pb.h:18:2: error: incompatible with your Protocol Buffer headers.  Please
#error incompatible with your Protocol Buffer headers.  Please
 ^
/usr/home/skywalk/work/opencv-python-3.4.17.63/opencv/modules/dnn/misc/caffe/opencv-caffe.pb.h:19:2: error: regenerate this file with a newer version of protoc.
#error regenerate this file with a newer version of protoc.

搞不定。

不过可喜的是,

import cv2没有报错,也就是opencv可以用啊!

后来测试,发现不行

编译opencv-python-headless报错

In file included from /usr/home/skywalk/work/opencv-python-headless-4.9.0.80/opencv/modules/dnn/misc/caffe/opencv-caffe.pb.cc:4:
In file included from /usr/home/skywalk/work/opencv-python-headless-4.9.0.80/opencv/modules/dnn/misc/caffe/opencv-caffe.pb.h:10:
/usr/local/include/google/protobuf/port_def.inc:210:1: error: static_assert failed due to requirement '201103L >= 201402L' "Protobuf only supports C++14 and newer."
static_assert(PROTOBUF_CPLUSPLUS_MIN(201402L), "Protobuf only supports C++14 and newer.");
^             ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

在root账户下fastdeploy c编译,make install 报错

-- Installing: /root/work/fd/include/fastdeploy/utils/path.h
CMake Error at cmake_install.cmake:81 (file):
  file INSTALL cannot find
  "/home/skywalk/github/FastDeploy/build/third_libs/install": No such file or
  directory.

尝试

cd ~/github/FastDeploy/build/third_libs

mkdir install
cp -rf patchelf/ install/
然后再make install

c推理例子编译报错:

skywalk@x250:~/github/FastDeploy/examples/runtime/cpp % gcc infer_demo.cc
In file included from /usr/local/include/fastdeploy/vision/visualize/visualize.h:17,
                 from /usr/local/include/fastdeploy/vision.h:78,
                 from infer_demo.cc:2:
/usr/local/include/fastdeploy/vision/common/result.h:16:10: fatal error: opencv2/core/core.hpp: No such file or directory
   16 | #include "opencv2/core/core.hpp"
      |          ^~~~~~~~~~~~~~~~~~~~~~~
compilation terminated.
skywalk@x250:~/github/FastDeploy/examples/runtime/cpp %

examples/runtime/cpp目录编译生成的demo 文件runtime_demo执行报错:

./runtime_demo
[ERROR] fastdeploy/runtime/runtime.cc(105)::AutoSelectBackend    The candiate backends for ModelFormat::PADDLE & Device::CPU are [ Backend::PDINFER ,Backend::PDLITE ,Backend::ORT ,Backend::OPENVINO ], but both of them have not been compiled with current FastDeploy yet.
Assertion failed: (runtime.Init(runtime_option)), function main, file /home/skywalk/github/FastDeploy/examples/runtime/cpp/infer_paddle_paddle_inference.cc, line 37.
Abort (core dumped)

fastdeploy编译报错'opencv2/imgcodecs.hpp' file not found

type.cc.o
/home/skywalk/github/FastDeploy/c_api/fastdeploy_capi/core/fd_type.cc:17:10: fatal error: 'opencv2/imgcodecs.hpp' file not found
#include <opencv2/imgcodecs.hpp>
         ^~~~~~~~~~~~~~~~~~~~~~~

用Pillow替代opencv推理报错

python inf.py
Traceback (most recent call last):
  File "/usr/home/skywalk/py310/lib/python3.10/site-packages/fastdeploy_python-0.0.0-py3.10-freebsd-13.2-RELEASE-amd64.egg/fastdeploy/c_lib_wrap.py", line 164, in <module>
    from .libs.fastdeploy_main import *
ImportError: Shared object "libdl.so.2" not found, required by "libonnxruntime.so.1.12.0"

During handling of the above exception, another exception occurred:

先搁置。

相关文章:

编译安装飞桨fastdeploy@FreeBSD(失败)

FastDeploy是一款全场景、易用灵活、极致高效的AI推理部署工具&#xff0c; 支持云边端部署。提供超过 &#x1f525;160 Text&#xff0c;Vision&#xff0c; Speech和跨模态模型&#x1f4e6;开箱即用的部署体验&#xff0c;并实现&#x1f51a;端到端的推理性能优化。包括 物…...

java组合总和(力扣Leetcode39)

组合总和 力扣原题链接 问题描述 给定一个无重复元素的整数数组 candidates 和一个目标整数 target&#xff0c;找出 candidates 中可以使数字和为目标数 target 的所有不同组合&#xff0c;并以列表形式返回。你可以按任意顺序返回这些组合。 示例 示例 1&#xff1a; 输…...

ZK友好代数哈希函数安全倡议

1. 引言 前序博客&#xff1a; ZKP中的哈希函数如何选择ZK-friendly 哈希函数&#xff1f;snark/stark-friendly hash函数Anemoi Permutation和Jive Compression模式&#xff1a;高效的ZK友好的哈希函数Tip5&#xff1a;针对Recursive STARK的哈希函数 随着Incrementally Ve…...

VMware vSAN OSA存储策略 - 基于虚拟机的分布式对象存储

简介 博客&#xff1a;https://songxwn.com/ 存储策略 (Storage Policy) 是管理员定义的一组规则&#xff0c;这组规则定义了数据对象在 vSAN 存储上是如何保存的&#xff0c;存储策略定义了数据存储的可靠性、访问性能等特性。vSAN 提供了基于存储策略的存储管理 SPBM (Stor…...

JUC内容概述

复习概念 Sleep和Wait的区别 Sleep是Thread的静态方法&#xff0c;wait是Object的方法&#xff0c;任何对象实例都可以使用sleep不会释放锁&#xff0c;他也不需要占用锁&#xff0c;暂停。wait会释放锁&#xff0c;但是调用他的前提是线程占有锁他们都可以被Interrupted方法…...

postcss安装和使用

要安装和使用 PostCSS&#xff0c;你可以按照以下步骤操作&#xff1a; 步骤一&#xff1a;安装 PostCSS 在项目目录下&#xff0c;通过 npm 初始化一个新的 package.json 文件&#xff08;如果还没有&#xff09;&#xff1a; npm init -y 安装 PostCSS 和必要的插件&#x…...

macOS 13 Ventura (苹果最新系统) v13.6.6正式版

macOS 13 Ventura是苹果电脑的全新操作系统&#xff0c;它为用户带来了众多引人注目的新功能和改进。该系统加强了FaceTime和视频通话的体验&#xff0c;同时优化了邮件、Safari浏览器和日历等内置应用程序&#xff0c;使其更加流畅、快速和安全。特别值得一提的是&#xff0c;…...

WordPress Git主题 响应式CMS主题模板

分享的是新版本&#xff0c;旧版本少了很多功能&#xff0c;尤其在新版支持自动更新后&#xff0c;该主题可以用来搭建个人博客&#xff0c;素材下载网站&#xff0c;图片站等 主题特点 兼容 IE9、谷歌 Chrome 、火狐 Firefox 等主流浏览器 扁平化的设计加响应式布局&#x…...

安卓国内ip代理app,畅游网络

随着移动互联网的普及和快速发展&#xff0c;安卓手机已经成为我们日常生活和工作中不可或缺的一部分。然而&#xff0c;由于地理位置、网络限制或其他因素&#xff0c;我们有时需要改变或隐藏自己的IP地址。这时&#xff0c;安卓国内IP代理App便成为了一个重要的工具。虎观代理…...

Day53:WEB攻防-XSS跨站SVGPDFFlashMXSSUXSS配合上传文件添加脚本

目录 MXSS UXSS&#xff1a;Universal Cross-Site Scripting HTML&SVG&PDF&SWF-XSS&上传&反编译(有几率碰到) SVG-XSS PDF-XSS Python生成XSS Flash-XSS 知识点&#xff1a; 1、XSS跨站-MXSS&UXSS 2、XSS跨站-SVG制作&配合上传 3、XSS跨站-…...

k8s安装traefik作为ingress

一、先来介绍下Ingress Ingress 这个东西是 1.2 后才出现的&#xff0c;通过 Ingress 用户可以实现使用 nginx 等开源的反向代理负载均衡器实现对外暴露服务&#xff0c;以下详细说一下 Ingress&#xff0c;毕竟 traefik 用的就是 Ingress 使用 Ingress 时一般会有三个组件: …...

如何在Windows 10中打开屏幕键盘?这里有详细步骤

本文解释了在Windows 10中打开或关闭屏幕键盘的不同方法&#xff0c;还解释了如何将屏幕键盘固定到开始菜单。 使用屏幕键盘的快捷键 如果你喜欢快捷方式&#xff0c;你会喜欢这个&#xff1a;按物理键盘上的WinCTRLO。这将立即显示屏幕键盘&#xff0c;而无需通过轻松使用。…...

【Pt】马灯贴图绘制过程 03-制作油渍、积尘效果

目录 效果 一、制作油渍效果 1.1 基本油渍 1.2 流淌的油渍痕迹 二、制作浮尘效果 三、制作积尘效果 效果 一、制作油渍效果 1.1 基本油渍 将上篇制作的“锈迹_深色”和“锈迹_浅色”两个文件夹再次合并为一个文件夹 这里就命名为“锈迹” 添加一个填充图层 设置Base …...

python-numpy-常用函数详解

文章目录 一、函数详解np.empty(num_points)np.zeros(shape, dtypefloat, orderC)np.tile(A, reps)np.newaxisnumpy.stack(arrays, axis0)np.roll(a, shift, axisNone) 二、实例矩阵进行扩展三行&#xff0c;使得每一行都与第一行相同二维数组每行减去不同的数 一、函数详解 n…...

UE小:基于UE5的两种Billboard material(始终朝向相机材质)

本文档展示了两种不同的效果&#xff0c;分别是物体完全朝向相机和物体仅Z轴朝向相机。通过下面的演示和相关代码&#xff0c;您可以更加直观地理解这两种效果的差异和应用场景。 1. 完全朝向相机效果 此效果下&#xff0c;物体将完全面向相机&#xff0c;不论相机在哪个角度…...

spring boot actuator 安全配置 springboot的安全性

关于springboot Actuator框架的安全配置方案&#xff1a; 加入security安全验证框架 方案一&#xff1a; 配置信息&#xff1a; spring:security:user:password: adminname: adminmanagement:endpoints:web:base-path: /monitorexposure:include: "*"# 排除端点e…...

macOS Sonoma如何查看隐藏文件

在使用Git进行项目版本控制时&#xff0c;我们可能会遇到一些隐藏文件&#xff0c;比如.gitkeep文件。它通常出现在Git项目的子目录中&#xff0c;主要作用是确保空目录也可以被跟踪。 终端命令 在尝试查看.gitkeep文件时&#xff0c;使用Terminal命令来显示隐藏文件 default…...

深入浅出:语言模型的原理、实战与评估

深入浅出&#xff1a;语言模型的原理、实战与评估 1. 引言1.1. 关于语言模型1.2. 语言模型的重要性 2. 语言模型简介2.1. 语言模型的类型2.2. 技术演进 3. 语言模型的原理3.1. 概率基础3.2. 深度学习模型 4. 语言模型的实战应用4.1. 数据准备4.2. 模型训练4.3. 应用场景 5. 语言…...

基于ssm的线上旅行信息管理系统论文

摘 要 随着旅游业的迅速发展&#xff0c;传统的旅行信息查询管理方式&#xff0c;已经无法满足用户需求&#xff0c;因此&#xff0c;结合计算机技术的优势和普及&#xff0c;特开发了本线上旅行信息管理系统。 本论文首先对线上旅行信息管理系统进行需求分析&#xff0c;从系…...

Jupyter开启远程服务器(最新版)

Jupyter Notebook 在本地进行访问时比较简单&#xff0c;直接在cmd命令行下输入 jupyter notebook 即可&#xff0c;然而notebook的作用不止于此&#xff0c;还可以用于远程连接服务器&#xff0c;这样如果你有一台服务器内存很大&#xff0c;但是呢你又不喜欢在linux上进行操作…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

2025年低延迟业务DDoS防护全攻略:高可用架构与实战方案

一、延迟敏感行业面临的DDoS攻击新挑战 2025年&#xff0c;金融交易、实时竞技游戏、工业物联网等低延迟业务成为DDoS攻击的首要目标。攻击呈现三大特征&#xff1a; AI驱动的自适应攻击&#xff1a;攻击流量模拟真实用户行为&#xff0c;差异率低至0.5%&#xff0c;传统规则引…...

node.js的初步学习

那什么是node.js呢&#xff1f; 和JavaScript又是什么关系呢&#xff1f; node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说&#xff0c; 需要在node.js的环境上进行当JavaScript作为前端开发语言来说&#xff0c;需要在浏览器的环境上进行 Node.js 可…...