当前位置: 首页 > news >正文

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之九 简单闪烁效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之九 简单闪烁效果

目录

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之九 简单闪烁效果

一、简单介绍

二、简单闪烁效果实现原理

三、简单闪烁效果案例实现简单步骤

四、注意事项


一、简单介绍

Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。Python是一种解释型脚本语言,可以应用于以下领域: Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发、网络爬虫。

这里使用 Python  基于 OpenCV 进行视觉图像处理,......

二、简单闪烁效果实现原理

闪烁效果是指物体或光源快速、周期性地改变亮度或颜色的视觉效果。

在图像处理中,闪烁效果通常通过改变图像的亮度或对比度来实现,使图像在观察者眼中产生明暗变化的感觉。

这种效果常用于增强视觉吸引力或制造特殊效果,比如模拟闪烁的灯光、霓虹灯等。

在实际应用中,闪烁效果的频率、幅度和持续时间可以根据需要进行调整,以达到理想的视觉效果。

实现原理:

1、设定闪烁周期: 确定闪烁的周期,即图像亮度和对比度调整的时间间隔。在本例中,设定为1秒。

time.time() 返回当前时间的时间戳,用于计算时间间隔。

2、进入处理循环: 在一个无限循环中,持续处理图像以实现闪烁效果。

3、计算时间差: 在每次循环迭代中,计算当前时间与开始闪烁的时间之间的时间差。

4、调整亮度和对比度: 如果时间差大于闪烁周期,则进行图像亮度和对比度的调整。调整值通常在一定范围内随机生成,以获得随机的闪烁效果。

np.random.uniform() 用于生成指定范围内的随机数,用于调整亮度和对比度。

5、应用调整后的效果: 使用 cv2.convertScaleAbs() 函数将调整后的亮度和对比度应用于原始图像,生成调整后的图像。

cv2.convertScaleAbs() 将输入数组进行比例缩放并转换为无符号8位整数类型,用于调整图像的亮度和对比度。

6、反转亮度: 如果时间差大于闪烁周期,则将调整后的图像的亮度反转,以模拟闪烁效果。

三、简单闪烁效果案例实现简单步骤

1、编写代码

2、运行效果

3、具体代码

"""
简单的闪烁效果1、读取图像文件: 首先,从文件系统中读取输入的图像文件,该图像将作为闪烁效果的基础。2、设定闪烁周期: 确定闪烁的周期,即图像亮度和对比度调整的时间间隔。在本例中,设定为1秒。3、进入处理循环: 在一个无限循环中,持续处理图像以实现闪烁效果。4、计算时间差: 在每次循环迭代中,计算当前时间与开始闪烁的时间之间的时间差。5、调整亮度和对比度: 如果时间差大于闪烁周期,则进行图像亮度和对比度的调整。调整值通常在一定范围内随机生成,以获得随机的闪烁效果。6、应用调整后的效果: 使用 cv2.convertScaleAbs() 函数将调整后的亮度和对比度应用于原始图像,生成调整后的图像。7、反转亮度: 如果时间差大于闪烁周期,则将调整后的图像的亮度反转,以模拟闪烁效果。8、显示处理后的图像: 使用 cv2.imshow() 函数在窗口中显示处理后的图像。9、等待用户退出: 检测用户是否按下 'q' 键,如果是则退出循环。10、释放资源: 循环结束后,释放窗口资源并结束程序。
"""import cv2
import numpy as np
import timedef BlinkingEffect(image, blink_interval=1):"""简单闪烁效果:param image::param blink_interval: 闪烁间隔时间:return:"""# 检查图像是否成功读取if image is None:print("Error: Unable to read image.")exit()# 定义闪烁周期(秒)blink_interval = blink_interval# 定义开始闪烁的时间start_blink_time = time.time()# 循环处理图像while True:# 计算当前时间和开始闪烁的时间之间的时间差current_time = time.time()time_diff = current_time - start_blink_time# 计算亮度和对比度的调整值brightness = np.random.uniform(-50, 50)contrast = np.random.uniform(0.5, 1.5)# 使用亮度和对比度调整值调整图像adjusted_image = cv2.convertScaleAbs(image, alpha=contrast, beta=brightness)# 如果时间差大于闪烁周期,则进行图像闪烁处理if time_diff > blink_interval:# 反转图像亮度adjusted_image = 255 - adjusted_image# 更新开始闪烁的时间start_blink_time = current_time# 设置窗口属性,并显示图片cv2.namedWindow("Dog", cv2.WINDOW_KEEPRATIO)cv2.imshow('Neon Light', adjusted_image)# 按下 q 键,退出if cv2.waitKey(25) & 0xFF == ord('q'):break# 释放窗口cv2.destroyAllWindows()def main():# 读取图像文件image = cv2.imread('Images/DogFace.jpg')# 设置窗口属性,并显示图片cv2.namedWindow("Dog", cv2.WINDOW_KEEPRATIO)cv2.imshow("Dog", image)# 调用闪烁效果BlinkingEffect(image, 1)if __name__ == "__main__":main()

四、注意事项

  • 使用 cv2.imread() 读取图像时,确保图像文件路径正确,并且图像文件存在。
  • 在调整图像亮度和对比度时,可以使用 cv2.convertScaleAbs() 函数来实现。亮度和对比度的调整值可以根据需要进行调整,以获得理想的闪烁效果。
  • 确保在循环中正确计算时间差,并根据闪烁周期来控制图像的闪烁频率。
  • 在调试代码时,可以适当调整闪烁周期和调整值,以获得更好的效果。

相关文章:

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之九 简单闪烁效果

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之九 简单闪烁效果 目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之九 简单闪烁效果 一、简单介绍 二、简单闪烁效果实现原理 三、简单闪烁效果案例实现简单步骤 四、注意事项 一、简单…...

11 开源鸿蒙OpenHarmony轻量系统源码分析

开源鸿蒙轻量系统源码分析 作者将狼才鲸日期2024-03-28 一、前言 之前单独的LiteOS是通过Makefile编译的,当前的开源鸿蒙LiteOS-M和LiteOS-A是通过gn和ninja编译的。 Gitee官方只介绍了LiteOS-M的gn ninja编译的流程,针对M3使用Keil编译的流程可能要参…...

专题:一个自制代码生成器(嵌入式脚本语言)之应用实例

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 专题:一个自制代码…...

Appium设备交互API

设备交互API指的是操作设备系统中的一些固有功能,而非被测程序的功能,例如模拟来电,模拟发送短信,设置网络,切换横竖屏,APP操作,打开通知栏,录屏等。 模拟来电 make_gsm_call(phon…...

Qlib-Server部署

Qlib-Server部署 介绍 构建Qlib服务器,用户可以选择: 一键部署Qlib服务器逐步部署Qlib服务器一键部署 Qlib服务器支持一键部署,用户可以选择以下两种方法之一进行一键部署: 使用docker-compose部署在Azure中部署使用docker-compose进行一键部署 按照以下步骤使用docker…...

CMC学习系列 (4):β段CMC可以作为一种中风治疗的生物标志物和治疗靶点

CMC学习系列:β段CMC可以作为一种中风治疗的生物标志物和治疗靶点 0. 引言1. 主要贡献2. 方法2.1 相干源动态成像2.2 源统计分析 3. 结果3.1 训练前后比较3.2 源代码分析3.3 皮质重叠的分组分析 4. 讨论5. 总结欢迎来稿 论文地址:https://www.sciencedirect.com/sci…...

jmeter中参数加密

加密接口常用的方式有: MD5,SHA,HmacSHA RSA AES,DES,Base64 压测中有些参数需要进行加密,加密方式已接口文档为主。 MD5加密 比如MD5加密的接口文档: 请求URL:http://101.34.221…...

YOLOv8改进 | 检测头篇 | 2024最新HyCTAS模型提出SAttention(自研轻量化检测头 -> 适用分割、Pose、目标检测)

一、本文介绍 本文给大家带来的改进机制是由全新SOTA分割模型(Real-Time Image Segmentation via Hybrid Convolutional-TransformerArchitecture Search)HyCTAS提出的一种SelfAttention注意力机制,论文中叫该机制应用于检测头当中(论文中的分割效果展现目前是最好的)。我…...

verilog设计-cdc:多比特信号跨时钟域(DMUX)

一、前言 多比特一般为数据,其在跨时钟域传输的过程中有多种处理方式,比如DMUX,异步FIFO,双口RAM,握手处理。本文介绍通过DMUX的方式传输多比特信号。 二、DMUX同步跨时钟域数据 dmux表示数据分配器,该方…...

服务器停止解析域名,但仍然可以访问到

1.centos7 如何刷新dns缓存 在CentOS 7上,DNS缓存由nscd(Name Service Cache Daemon)管理,如果系统上安装了nscd,可以通过清除nscd缓存来刷新DNS缓存。 要刷新DNS缓存,请执行以下命令: sudo …...

Centos系统与Ubuntu系统防火墙区别,以及firewalld、ufw和iptables三者之前的区别。

现在大多数Centos系统上的防火墙是firewalld,Ubuntu系统上是ufw,而iptables是最底层的防火墙工具。iptables是Linux系统中最早的防火墙工具,并且被许多不同的Linux发行版使用,包括CentOS和Ubuntu。然而,CentOS 7及更高…...

ES6 学习(三)-- es特性

文章目录 1. Symbol1.1 使用Symbol 作为对象属性名1.2 使用Symbol 作为常量 2. Iterator 迭代器2.1 for...of循环2.2 原生默认具备Interator 接口的对象2.3 给对象添加Iterator 迭代器2.4 ... 解构赋值 3. Set 结构3.1 初识 Set3.2 Set 实例属性和方法3.3 遍历3.4 相关面试题 4…...

使用ChatGPT的场景之gpt写研究报告,如何ChatGPT写研究报告

推荐写研究报告使用智能站: dayfire.cn/ 1. 确定研究主题 明确主题:在开始之前,你需要有一个清晰的研究主题。这将帮助AI更好地理解你的需求…...

librdkafka的简单使用

文章目录 摘要kafka是什么安装环境librdkafka的简单使用生产者消费者 摘要 本文是Getting Started with Apache Kafka and C/C的中文版, kafka的hello world程序。 本文完整代码见仓库,这里只列出producer/consumer的代码 kafka是什么 本节来源&#…...

【iOS ARKit】播放3D音频

3D音频 在前面系列中,我们了解如何定位追踪用户(实际是定位用户的移动设备)的位置与方向,然后通过摄像机的投影矩阵将虚拟物体投影到用户移动设备屏幕。如果用户移动了,则通过VIO 和 IMU更新用户的位置与方向信息&…...

ES学习日记(四)-------插件head安装和一些配套插件下载

前言 接上节,第三方插件选择了时间久,功能丰富,长得丑的head,head 插件在ES 5版本以前开箱即用非常简单,ES 5版本以后需要运行在node环境下,所以我们要先准备一下环境 一.安装Git 不装了,明儿再说,看会儿手机准备下班!!!!!!!!!...

flask+uwsgi+云服务器 部署服务端

参考:使用uwsgi部署flask 报错 “找不到Python应用程序,请检查启动日志以查找错误” 或者: no python application found, check your startup logs for errors debug 过程:查到Python uWSGI 安装配置 里面说,先写测…...

linux学习之路 -- 普通用户添加进sudoer列表

在Linux系统里,很多的操作普通用户是不能执行的,所以我们需要对普通用户进行提权操作,可我们会发现,一开始没有配置的话,是无法的提权操作的,下面我将介绍普通用户该如何配置sudoer列表。 首先以root 的身…...

【分类评估指标,精确率,召回率,】from sklearn.metrics import classification_report

from: https://zhuanlan.zhihu.com/p/368196647 多分类 from sklearn.metrics import classification_report y_true [0, 1, 2, 2, 2] y_pred [0, 0, 2, 2, 1] target_names [class 0, class 1, class 2] # print(classification_report(y_true, y_pred, targe…...

element-ui autocomplete 组件源码分享

紧接着 input 组件的源码,分享带输入建议的 autocomplete 组件,在 element-ui 官方文档上,没有这个组件的 api 目录,它的 api 是和 input 组件的 api 在一起的,看完源码之后发现,源码当中 autocomplete 组件…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...