当前位置: 首页 > news >正文

数值分析复习:逼近理论的应用——最小二乘问题、解超定、欠定方程组

文章目录

  • 逼近理论的应用——最小二乘问题、解超定、欠定方程组
    • 离散平方逼近
    • 最小二乘解

本篇文章适合个人复习翻阅,不建议新手入门使用
本专栏:数值分析复习 的前置知识主要有:数学分析、高等代数、泛函分析

逼近理论的应用——最小二乘问题、解超定、欠定方程组

离散平方逼近

设全空间 X = R n X=\mathbb{R}^n X=Rn, 在 R n \mathbb{R}_n Rn 中取 m < n m<n m<n 个线性无关的向量 ( X 1 , … , X m ) (X_1,\dots,X_m) (X1,,Xm),令 M = s p a n { X 1 , … , X m } M=span\{X_1,\dots,X_m\} M=span{X1,,Xm},则对任意 Y ∈ X \ M Y\in X\backslash M YX\M M M M 中存在唯一的最佳逼近元 X ∗ = ∑ i = 1 m c i X i X^*=\sum\limits_{i=1}^mc_iX_i X=i=1mciXi,其满足以下法方程组
∑ i = 1 m < X i , X j > c i = < Y , X j > \sum\limits_{i=1}^m<X_i,X_j>c_i=<Y,X_j> i=1m<Xi,Xj>ci=<Y,Xj>若设 A = [ X 1 , … , X m ] , C = [ c 1 , … , c m ] T A=[X_1,\dots,X_m],C=[c_1,\dots,c_m]^T A=[X1,,Xm],C=[c1,,cm]T,则方程组等效于
A T A C = A T Y A^TAC=A^TY ATAC=ATY

最小二乘解

求如下的最小化问题的解
x ∈ R n , s . t . min ⁡ ∣ ∣ A x − b ∣ ∣ 2 x\in \mathbb{R}^n,s.t.\min||Ax-b||_2 xRn,s.t.min∣∣Axb2由离散平方逼近的理论,其解满足
A T A x = A T b A^TAx=A^Tb ATAx=ATb

应用:求解超定、欠定方程组

我们把线性方程组 A x = b Ax=b Ax=b 中,
未知数多于方程个数的方程组称为欠定方程组
未知数多于方程个数且有矛盾方程的方程组称为超定方程组

欠定方程组一般有多个解,超定方程组一般无解,故在工程上常用1范数或2范数意义下的最佳逼近解来作为解,即上述的最小二乘解
x ∈ R n , s . t . min ⁡ ∣ ∣ A x − b ∣ ∣ 2 x\in \mathbb{R}^n,s.t.\min||Ax-b||_2 xRn,s.t.min∣∣Axb2其解满足
A T A x = A T b A^TAx=A^Tb ATAx=ATb

参考书籍:《数值分析》李庆扬 王能超 易大义 编

相关文章:

数值分析复习:逼近理论的应用——最小二乘问题、解超定、欠定方程组

文章目录 逼近理论的应用——最小二乘问题、解超定、欠定方程组离散平方逼近最小二乘解 本篇文章适合个人复习翻阅&#xff0c;不建议新手入门使用 本专栏&#xff1a;数值分析复习 的前置知识主要有&#xff1a;数学分析、高等代数、泛函分析 逼近理论的应用——最小二乘问题、…...

设计模式-设配器模式

目录 &#x1f38a;1.适配器模式介绍 &#x1f383;2.适配器类型 &#x1f38f;3.接口适配器 &#x1f390;4.类的适配器 &#x1f38e;5.优缺点 1.适配器模式介绍 适配器模式&#xff08;Adapter Pattern&#xff09;是作为两个不兼容的接口之间的桥梁。这种类型的设…...

BEVFormer v2论文阅读

摘要 本文工作 提出了一种具有透视监督&#xff08;perspective supervision&#xff09;的新型鸟瞰(BEV)检测器&#xff0c;该检测器收敛速度更快&#xff0c;更适合现代图像骨干。现有的最先进的BEV检测器通常与VovNet等特定深度预训练的主干相连&#xff0c;阻碍了蓬勃发展…...

FFMPEG C++封装(二)

4 详细设计 这章是FFMPEG C封装库的详细设计。 4.1 Init 该模块初始化FFMPEG库。 4.1.1 Init定义 namespace media { namespace sdk { void MEDIASDK_EXPORT Init(); } }函数说明&#xff1a; Init 初始化FFMPEG库&#xff0c;该函数可调用多次。 4.1.2 Init实现 name…...

使用unplugin-auto-import页面不引入api飘红

解决方案&#xff1a;. tsconfig.json文件夹加上 {"compilerOptions": {"target": "ES2020","useDefineForClassFields": true,"module": "ESNext","lib": ["ES2020", "DOM", &q…...

八大技术趋势案例(虚拟现实增强现实)

科技巨变,未来已来,八大技术趋势引领数字化时代。信息技术的迅猛发展,深刻改变了我们的生活、工作和生产方式。人工智能、物联网、云计算、大数据、虚拟现实、增强现实、区块链、量子计算等新兴技术在各行各业得到广泛应用,为各个领域带来了新的活力和变革。 为了更好地了解…...

Vue实现SQL语句关键字高亮显示?

SQL关键字高亮 要在Vue中实现SQL语句中关键字的高亮显示&#xff0c;你可以使用类似的方法&#xff0c;但是你需要根据SQL语法的特点来解析并高亮显示关键字。以下是一个示例代码&#xff0c;演示了如何在Vue中实现SQL语句关键字的高亮显示。 <template><div><…...

开始时间大于结束时间

1.dom中代码&#xff0c;监听所选日期值的变化&#xff0c;并把需要比较的时间字段作为参数传到监听方法中&#xff0c; <el-form-item label"起始日期" prop"startTime"><el-date-picker clearable size"small":disabled"isDisa…...

Java中 List 集合,通过 Stream 流进行排序总结

一、数据准备 public class OrderTest {private String channelCode;private BigDecimal rate;// 省略 getter、setter、toString()、constructor }List<OrderTest> orderTestList new ArrayList<>();OrderTest z09 new OrderTest("Z09", new BigDeci…...

1688中国站按关键字搜索工厂数据 API

公共参数 名称类型必须描述keyString是申请免费调用key&#xff08;必须以GET方式拼接在URL中&#xff09;secretString是调用密钥api_nameString是API接口名称&#xff08;包括在请求地址中&#xff09;[item_search,item_get,item_search_shop等]cacheString否[yes,no]默认y…...

YOLOV8逐步分解(2)_DetectionTrainer类初始化过程

接上篇文章yolov8逐步分解(1)--默认参数&超参配置文件加载继续讲解。 1. 默认配置文件加载完成后&#xff0c;创建对象trainer时&#xff0c;需要从默认配置中获取类DetectionTrainer初始化所需的参数args&#xff0c;如下所示 def train(cfgDEFAULT_CFG, use_pythonFalse…...

Java是用什么语言写的?PHP呢?

Java底层是C语言。 Sun公司研发人员根据嵌入式软件的要求&#xff0c;对C进行了改造&#xff0c;去除了留在C的一些不太实用及影响安全的成分&#xff0c;并结合嵌入式系统的实时性要求&#xff0c;开发了一种称为Oak的面向对象语言。而后&#xff0c;经过迭代更新&#xff0c…...

SpringBoot Redis的使用

官方文档&#xff1a; 官方文档&#xff1a;Spring Data Redis :: Spring Data Redis 和jedis一样&#xff0c;SpringBoot Redis 也可以让我在Java代码中使用redis&#xff0c;同样也是通过引入maven依赖的形式。 加速访问github: 使用steam可以免费加速访问github Spring…...

数据仓库——维度表特性

企业信息化工厂 数据集市中的一致性&#xff0c;由于企业信息化工厂的数据集市是从集成仓库中获得信息的&#xff0c;因此至少从维度建模的角度来看&#xff0c;一致性维护的问题减少了。尽管合并不同数据源的问题依然在&#xff0c;但是负担主要在设计者身上。尽管压力降低了…...

从电荷角度理解开关电容中的电荷守恒

目录 一些铺垫电容的电荷量的解释电荷流入流出对节点电压的影响 从电荷角度理解开关电容加法器中的电荷守恒以开关电容积分器为例说明什么样的节点是电荷守恒 一些铺垫 电容的电荷量的解释 对于一个1F的电容&#xff0c;当它的压差为1V时&#xff0c;它所携带的电荷量是QCU1库…...

1.7.1 python 作业 15道

1、求出1 / 1 1 / 3 1 / 5……1 / 99的和 (1分之一1分之三1分支5....) sum0 for i in range(1,100,2): sum 1/i sum; print(sum) 2、用循环语句&#xff0c;计算2 - 10之间整数的循环相乘的值 &#xff08;2*3*4*5....10) sum 1 for i in range(2,11): sum sum *…...

synchronized 和 ReentrantLock 的区别是什么

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 面试官:synchronized 和 ReentrantLock 的区别是什么 1. 获取锁的方式 synchronized:synchronized的锁获取是隐式的。当线程进入synchronized修饰的代码…...

大话设计模式之迪米特法则

迪米特法则&#xff0c;也称为最少知识原则&#xff08;Law of Demeter&#xff09;&#xff0c;是面向对象设计中的一个重要原则&#xff0c;其核心思想是降低耦合度、减少对象之间的依赖关系&#xff0c;从而使系统更加灵活、易于维护和扩展。 根据迪米特法则&#xff0c;一…...

KSD测试系统使用方法和注意事项

①下载链接在最顶部&#xff1b; ②安装方法&#xff1a;应该先将测试设备绑定在假人身上&#xff0c;测试设备不能过度往下拉&#xff0c;传感器绑在脖子上&#xff0c;切记最后才开传感器开关&#xff01;&#xff01;&#xff01;开传感器后3秒内不要碰测试设备衣服&#x…...

IT服务营销管理案例分析题

习题一 企业随着业务的蓬勃发展&#xff0c;所投入的基础设施资源不断增加。企业员工数倍数增长&#xff0c;办公场地、办公环境等要求也越来越高。 可是该企业的IT部门人员短缺&#xff0c;对IT管理还处于被动的“救火”阶段&#xff0c;每天至少15个突发故障&#xff0c;故障…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...