百度智能云千帆,产业创新新引擎

本文整理自 3 月 21 日百度副总裁谢广军的主题演讲《百度智能云千帆,产业创新新引擎》。
各位领导、来宾、媒体朋友们,大家上午好。很高兴今天在石景山首钢园,和大家一起沟通和探讨大模型的发展趋势,以及百度最近一段时间的思考和实践。
自去年 3 月 27 日发布千帆大模型平台到今天,刚好过去了一年的时间。过去这一年,国内外的大模型都在迅速发展,相关应用的爆发趋势也更加明显。
从发展趋势来看,有如下几个特点:
-
第一, 大模型的技术在不断进步。通过模型架构改进、训练算法调优等方式,大模型的效率和性能都得到了显著提升;
-
第二,行业应用场景的成熟。大模型在各种行业已经开始落地,这些实践经验激发了行业更多的兴趣和投入;
-
第三,政府、投资机构对人工智能技术的支持不断增加。这也为大模型的研发、部署和应用提供了更多资源和机会;
-
第四,社会对人工智能技术的理解和接受度不断提高。用户对于智能化、个性化服务的需求, 也推动了大模型在各种场景中的应用。
但在过去一年与企业的实际接触过程中,我们发现企业落地大模型时,也面临着在落地场景的探索、应用开发的门槛、推理和训练的成本和落地应用的效果等四个方面的挑战。

为了解决这些挑战,帮助企业用户落地,千帆提供了包括算力、模型开发、应用开发在内的一整套的大模型开发工具,为企业打造了大模型服务的超级工厂,帮助企业降低成本、提高效率与模型应用的效果。

千帆平台自发布以来一直保持着高速增长的趋势,相比于去年 12 月,千帆的日均季度环比增长了 97%,翻了接近一倍。

同时,我们也很高兴地跟大家宣布,千帆平台服务客户数已经突破了 8 万,最近一个月就增长了近 1 万。
同时,平台已经精调出 1.3w 个模型,开发应用数也达到了 16w。基于这些数据大家也可以看到,大模型已经真正进入到了快速增长的阶段。
未来,千帆也将帮助企业客户、开发者看到更多「创新机会」。随着千帆客户数量不断增多,我们也感受到,大家目前更关心的是怎么把大模型「用起来」,真正给企业业务带来价值。

今天,我为大家带来全新升级的 AI 原生应用开发平台 AppBuilder,以最好的应用效果、最优的开发体验支撑 AI 原生应用的繁荣。

千帆 AppBuilder,是一个产业级的 AI 原生应用开发平台。它可以帮助广大的客户和开发者不断降低应用开发门槛。
AppBuilder 底层由基础组件和高级组件构成。在基础组件中,包含大模型组件、AI 能力组件等。这些组件都是基于百度多年的技术和实践经验沉淀的。
除了基础组件,AppBuilder 还面向典型的应用场景,深入调优建设了一系列高级组件,比如知识问答类的 RAG、具备运算能力的代码解释器,以及生成式数据分析 GBI 等。
基础组件和高级组件共同支撑 Agent。一方面可以通过工作流编排实现更为复杂的业务逻辑,另一方面 Agent 也具备强大的自主任务规划能力。所有这些底层能力,通过代码态和零代码态两种形态提供服务。同时,多渠道对外集成分发。

千帆 AppBuilder 具备三大核心优势特点:
-
第一,应用效果领先,具备高精度知识问答效果及精准的自主任务规划能力;
-
第二,组件多元化且支持自定义接入;
-
第三,产品开放易用。
接下来我来为大家详细介绍。

讲应用效果就离不开场景。知识问答(也就是 RAG )是大模型最典型的应用场景之一。AppBuilder 在这个场景建设了企业级全链路检索增强的应用框架及周边工具,并做了很多深入细致的优化工作,包括底层基座模型的 SFT 调优、文档解析、语义匹配、问题拆解等环节的策略优化,使得知识问答的效果达到更好的水平。
通过这些优化,AppBuilder 的 RAG 在多场景问答准确率、友好回复、准确拒答等方面可接受度达 95% 以上。大家可以看到下图中的对比数据, AppBuilder 在效果上超越了其他同类产品。

另一个非常典型的应用场景是 Agent。AppBuilder 构建了具备精准自主任务规划能力的 Agent 框架,可实现多工具自动编排, 准确率达到 90% 以上。官方提供了近 30 种编排工具,覆盖电商/互娱/办公/专业服务等主流场景。
同时,AppBuilder 支持开发者接入自定义工具, 通过自动编排与手动编排的结合,实现复杂场景需求的定制。此外,代码解释器的效率与效果持续提升,相比 升级前性能提升 40%、数据分析场景可接受度提升到 95%。

AppBuilder 具备丰富的组件工具,目前已扩充到 55 个。这些组件包括基于百度技术积累和自有业务沉淀的大模型能力组件,如多轮改写、复杂 Query 分解等;也包括 AI 能力组件,比如 TTS、OCR、图像识别等。通过大小模型联合及业务场景化工具组件,共同支撑 AI 原生应用的开发。
此外,AppBuilder 还提供了百度独家开放的业务组件,如在搜索领域有深厚积累的百度搜索,以及一些业界主流场景的第三方 API,比如航班查询、论文查询等。
同时,AppBuilder 支持用户接入自定义组件。我们还提供百度基础云的一些组件,比如 BES 等,这里特别提下专用向量数据库 VDB,它也迎来了一次全新的升级。

向量数据库是企业不可或缺的知识库核心组件,它针对传统知识库问答系统所遇到的性能瓶颈、 维护挑战及规模限制等问题提供了有力解决方案。
VDB 1.0 这一革命性的数据库内核,不仅集成了全面的运维控制和安全防护能力,还兼容了千帆、LangChain 等主流生态系统,使企业能够轻松管理数以千万计的文档知识。
在性能表现上,VDB 与同类型开源产品相比,其在不同应用场景下的性能有不同程度的提升,最高可达 10 倍,真正实现了毫秒级的向量检索速度。
同时,在扩展性方面,支持最大百亿级别的向量数据存储,以及秒级的弹性伸缩响应。这些突出优势确保了 VDB 能够伴随企业业务的不断发展而升级,持续满足日益增长的业务需求。

再回到 AppBuilder。它的第三大优势是开放易用。
-
首先是主流场景的工具组件开放可灵活编排, 提供丰富的应用示例,用户一次鉴权全部接入。
-
其次, 提供开源的 RAG 和 Agent SDK ,支持二次开发。本次升级后,最快只需要三步即可完成应用的创建于开发,还可一键对接百度灵境矩阵、微信公众号、微信客服、Web 端/ H5 等渠道。
这里也特别说一下百度灵境矩阵,此次与灵境矩阵的打通,应用将有机会在百度强大的搜索场景中轻松实现分发和挂载,同时也能融入百度的信息流场景,吸引更多潜在用户的目光。

目前,已经有上万开发者和伙伴,通过 Appbuilder 创建出各种场景的 AI 原生应用。
刚刚我分享的是如何帮助企业快速去搭建应用。除了降低企业的应用开发门槛,企业还会有另外一个需求,就是开发出的应用效果怎么能够做好。这背后是通过我们的各种基座模型的能力去实现的。

今天,在千帆大模型平台上的模型迎来了关键升级和全新模型发布,首先让我们来一起看下文心大模型 3.5 和 4.0 的重磅升级。

首先,我来为大家介绍文心大模型 ERNIE 3.5 的重磅升级。
升级后的 ERNIE 3.5,在指令遵循、上下文学习和逻辑推理能力都有显著的效果提升, 同时我们可以看到企业核心的文案创作、信息抽取、工具调用场景都有不同程度的效果优化。
除了普遍应用的 ERNIE 3.5,另一个受到行业广泛关注的是大模型 ERNIE 4.0。它在理解、生成、逻辑、记忆能力等方面均达到业界顶尖水平。
经权威机构测评,ERNIE 4.0 在专项学科能力、安全与责任、以及综合得分均排名第一。作为目前行业领先、以及中文领域最强模型,ERNIE 4.0 已经成为企业在复杂场景应用的最佳选择。

以上就是我们文心大模型 3.5 和 4.0 的升级内容。
随着接触客户及场景越来越多,我们发现一个趋势:很多的公司在使用大模型的时候,成本是他们考虑的关键因素。我们总结了一下这类需求,归纳为【效价比】
结合百度持续的技术升级及领域深耕,我们发现,在特定场景下,参数较小的大模型经过精调可以达到甚至超越大模型的效果,而且能为企业大幅降低成本及响应速度。

今天,我们将为大家带来三款轻量级大模型的发布,便于企业通过推理、精调的方式去实现最优效价比。

首先是全新发布 ERNIE Speed,这是一个最适合微调的基座模型,同时上下文最高支持 128K。
大家可以看到右边的这组数据对比:以小说角色扮演和英语口语练习的场景为例,可以明显看到微调后的 ERNIE Speed 效果超越了大参数量级模型 ERNIE 4.0。

如果企业还要追求更快、更轻、成本更低, 第二款产品 ERNIE Lite 将是企业的首选,同时 Lite 也是一款非常适合低算力、AI 加速卡推理使用的轻量级大模型。
ERNIE Lite 是 ERNIE-Bot-turbo 模型的升级版。我们可以看到新版的 Lite,相较于 Turbo 在情感分析、多任务学习、自然推理等场景下效果提升了 20% 左右。
除了效果上的提升,企业在该模型上的推理调用成本,对比升级前降低了 53%。

最后一款模式可以说是极致低成本、低延迟的最佳模型:ERNIE Tiny。
Tiny 是目前文心系列中部署与精调成本最低的模型,非常适用于检索、推荐、意图识别等高并发、低延时的场景。
举个例子,在搜索推荐场景下,精调后的 Tiny 在推荐词激发环节,相较于之前使用 ERNIE 3.5 模型,对话轮次增长了 3.5%,成本下降了 32%。

除了文心大模型升级以及轻量级大模型的发布外,我们此次还基于垂直场景, 推出了两个产业级最佳实践模型:ERNIE Character 和 ERNIE Functions。
ERNIE-Character 是专为角色扮演类场景研发的一款大模型,非常适合游戏 NPC、客服对话等业务应用。
举一个实际的应用案例,目前我们的某个智能硬件厂商客户,通过 Character 模型打造智能助理,在人设一致性,以及激发用户聊天欲望等方面,给业务带来了显著提升。
另外,ERNIE Functions 作为一款工具调用场景大模型,优点是结构化回答及合成能力强,并且输出格式稳定。我们某个旅游出行客户,通过 ERNIE Functions 打造了智能客服助手,在执行订票、查询航班状态等多种场景下,调用的准确率达到了 92% 以上。

今天,我已经发布完 5 款全新的模型,那么在企业具体应用中,这些模型是如何为企业带来最优效价比的?我来通过一个模型路由的案例,为大家具体说明一下。
模型路由,来源于现在比较流行的 MoE。它的核心理念就是通过轻量级大模型降本增效。
大家可以看到左边,在用户输入问题之后,就接入到 router 模型中。router 模型负责判别用户的意图,在把用户的意图分发到不同的大模型中。
以前整个场景都在用大参数模型。现在,我们就可能基于这种意图判别把很多的垂类场景请求分发到更小尺寸的模型中。在企业的实际应用过程当中,模型路由是一个非常划算的方式。
以手机智能助手为例,通过该模式,用户推理成本可以降低 15%,同时效果和 ERNIE 3.5 持平。未来我们也会把这套方案做成产品,让用户通过精调的方式自主选择分流的方案。

最后,我们再用一张图,来回顾和梳理下百度智能云千帆大模型平台的模型矩阵。
文心大模型 3.5 和 4.0 适合通用复杂场景。轻量级大模型中,ERNIE Speed 和 ERNIE Lite 适用于垂直场景的定制训练。ERNIE Tiny 更快、更实惠,可用于特定场景的自然语言到指令调用,也适用边缘设备推理场景。
垂直场景模型 ERNIE Character 适合角色扮演,ERNIE Functions 适合对话或问答场景中的外部工具使用和业务函数调用。
模型效果能力越强的模型,成本也会更高。 轻量级的大模型在特定场景,经过精调也会达到大参数模型的效果。企业可以在实际应用中,根据业务的需求来灵活选择不同的模型或者模型组合。

以上就是我今天发布的全部内容。
助力产业创新,千帆竞航未来 希望千帆能够助力企业和开发者在大模型的浪潮里,竞发向前,共赢未来。感谢大家!

- - - - - - - - - - END - - - - - - - - - -
推荐阅读
一文带你完整了解Go语言IO基础库
百度交易中台之系统对账篇
揭秘百度数仓融合计算引擎
教不会你算我输系列 | 手把手教你HarmonyOS应用开发
漫谈数据分布可视化分析
相关文章:
百度智能云千帆,产业创新新引擎
本文整理自 3 月 21 日百度副总裁谢广军的主题演讲《百度智能云千帆,产业创新新引擎》。 各位领导、来宾、媒体朋友们,大家上午好。很高兴今天在石景山首钢园,和大家一起沟通和探讨大模型的发展趋势,以及百度最近一段时间的思考和…...
Python下载cuda包失败后到成功(方便使用GPU加速运算,显著提高代码运行速度)
一、查询自己电脑上的cuda版本方法: 1.在windows的cmd里查询显卡cuda的版本号,命令行输入:nvidia-smi 2.在NVIDIA控制面板上寻找自己电脑上cuda的版本 二、安装支持的cuda的python cupy库 因为我的电脑上为cuda11.4,所以使用cuda114,不同的版…...
【Flink】Flink 处理函数之基本处理函数(一)
1. 处理函数介绍 流处理API,无论是基本的转换、聚合、还是复杂的窗口操作,都是基于DataStream进行转换的,所以统称为DataStreamAPI,这是Flink编程的核心。 但其实Flink为了更强大的表现力和易用性,Flink本身提供了多…...
【Java - 框架 - Lombok】(2) SpringBoot整合Lombok完成日志的创建使用 - 快速上手;
"SpringBoot"整合"Lombok"完成日志的创建使用 - 快速上手; 环境 “Java"版本"1.8.0_202”;“Lombok"版本"1.18.20”;“Spring Boot"版本"2.5.9”;“Windows 11 专业版_22621…...
linux 系统安装php 8.0.2
1. 安装包准备 https://www.php.net/distributions/php-8.0.22.tar.gz 我下载到 /usr/local/src 这个目录了 cd /usr/local/srcwget https://www.php.net/distributions/php-8.0.22.tar.gz 2. tar 解压 然后进到解压的文件夹 tar -zxvf php-8.0.22.tar.gz cd php-8.0.2…...
你管这破玩意叫网络
你是一台电脑,你的名字叫 A 很久很久之前,你不与任何其他电脑相连接,孤苦伶仃。 直到有一天,你希望与另一台电脑 B 建立通信,于是你们各开了一个网口,用一根网线连接了起来。 用一根网线连接起来怎么就能…...
系统开发实训小组作业week5 —— 用例描述与分析
目录 1、电影管理 1.1、 用例描述 1.2、 活动图 1.3、 界面元素 1.4、 功能 2、用户管理 2.1、 用例描述 2.2、 活动图 2.3、 界面元素 2.4、 功能 1、电影管理 1.1、 用例描述 用例号 UC009-01 用例名称 电影管理 用例描述 管理员实现对电影信息、座位数量、价…...
C语言例4-35:鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。百钱买百鸡、问鸡翁、鸡母和鸡雏各几何?
方法一: 代码如下: //鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。百钱买百鸡、问鸡翁、鸡母和鸡雏各几何? //方法一: #include<stdio.h> int main(void) {int x…...
Leetcode 167. 两数之和 II - 输入有序数组
给你一个下标从 1 开始的整数数组 numbers ,该数组已按 非递减顺序排列 ,请你从数组中找出满足相加之和等于目标数 target 的两个数。如果设这两个数分别是 numbers[index1] 和 numbers[index2] ,则 1 < index1 < index2 < numbers.…...
Java实体类之间的转换
一.为什么要转换实体类 通常在后端开发中经常不直接返回实体Entity类,经过处理转换返回前端,前端提交过来的对象也需要经过转换Entity实体才做存储。 二.怎么转换 使用的BeanUtils.copyProperties方法虽然可以实现转换,但是比较粗暴&#…...
ESCTF-Web赛题WP
0x01-初次见面-怦然心动:your name? 随便输入一个字 根据提示可以看到 我们需要看源代码 直接 搜索 secret 关键字或者 ESCTF flag ESCTF{K1t0_iS_S0_HAPPy} 0x02-小k的请求 更安全的传参 post 参数为ESCTF 值为 love 自己的ip 同时还有个要求 是需要从度娘转过来 https://www…...
某物登录表单加密
之前分析过某物h5的以及小程序的搜索接口,就是一个aes,秘钥不固定,表单里把秘钥以及密文一起发过去,服务器解密后再把数据加密返回,客户端解密展示到页面上. 这期是关于app的登录,密码登录 声明 本文章中所有内容仅供学习交流使用,不用于其他任何目的,…...
2024java面试题
题目:反转一个单链表描述:给定一个单链表的头节点,将其反转,返回反转后的链表的头节点。 题目:合并两个有序链表描述:给定两个有序链表的头节点,将它们合并成一个有序链表,返回合并…...
FebHost:什么是哈萨克斯坦.KZ域名?
哈萨克斯坦,作为中亚地区重要的一员,其国家域名”.kz”正成为这个独立国家在网络世界中的代表。作为一个经济快速发展的国家,哈萨克斯坦的互联网基础设施和网络应用也在蓬勃发展。而.kz域名正是哈萨克斯坦网络身份的重要体现。 作为注册和管理.kz域名的主要机构,哈…...
python(一)网络爬取
在爬取网页信息时,需要注意网页爬虫规范文件robots.txt eg:csdn的爬虫规范文件 csdn.net/robots.txt User-agent: 下面的Disallow规则适用于所有爬虫(即所有用户代理)。星号*是一个通配符,表示“所有”。 Disallow&…...
港大新工作 HiGPT:一个模型,任意关系类型 !
论文标题: HiGPT: Heterogeneous Graph Language Model 论文链接: https://arxiv.org/abs/2402.16024 代码链接: https://github.com/HKUDS/HiGPT 项目网站: https://higpt-hku.github.io/ 1. 导读 异质图在各种领域…...
Git版本管理使用手册 - 5 - Git的.ignore文件语法
Git的.ignore文件 1.使用 .ignore文件可以忽略指定文件的版本控制。 2.语法: (1)#开头表示注释 (2)!开头表示不忽略匹配文件 (3)* 表示除/外,任何字符串 (4)?表示除/外,任何一个字符 (5)/ 如果模式的结尾有分割符/&am…...
使用Spring Cloud Gateway构建API网关,实现路由、过滤、流量控制等功能。
使用Spring Cloud Gateway构建API网关,实现路由、过滤、流量控制等功能。 使用Spring Cloud Gateway可以轻松地构建API网关,实现路由、过滤、流量控制等功能。下面是一个简单的示例,演示如何在Spring Boot应用程序中集成Spring Cloud Gatewa…...
Matlab|电动汽车充放电V2G模型
目录 1 主要内容 1.1 模型背景 1.2 目标函数 1.3 约束条件 2 部分代码 3 效果图 4 下载链接 1 主要内容 本程序主要建立电动汽车充放电V2G模型,采用粒子群算法,在保证电动汽车用户出行需求的前提下,为了使工作区域电动汽车尽可能多的消…...
<QT基础(4)>QLabel使用笔记
Label 前面的文章里面把QLabel批量引入ScrollArea作为预览窗口,这篇把图像填充到QLable的PixelMap展示指定图像。 参数设置 设置QLabel的大小格式 QWidget* widget new QWidget; widget->setSizePolicy(QSizePolicy::Fixed, QSizePolicy::Fixed); widget->…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
Spring Boot + MyBatis 集成支付宝支付流程
Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例(电脑网站支付) 1. 添加依赖 <!…...
《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
数据库正常,但后端收不到数据原因及解决
从代码和日志来看,后端SQL查询确实返回了数据,但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离,并且ai辅助开发的时候,很容易出现前后端变量名不一致情况,还不报错,只是单…...
