【力扣】45.跳跃游戏Ⅱ
45.跳跃游戏Ⅱ
给定一个长度为 n
的 0
索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向前跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
- 0 <= j <= nums[i]
- i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
示例 1:
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4]
输出: 2
提示:
- 1 <= nums.length <= 104
- 0 <= nums[i] <= 1000
- 题目保证可以到达
nums[n-1]
解题方案
- C 贪心算法
#define MAX(a, b) ((a) > (b) ? (a) : (b))int jump(int* nums, int numsSize) {int max_tg = 0; // 能跳跃到的最远位置int step = 0; // 跳跃次数int next_start = 0; // 下次起跳点for (int i = 0; i < numsSize - 1; i++) {max_tg = MAX(max_tg, i + nums[i]);if (i == next_start) {next_start = max_tg; // 更新起跳位置step++; // 跳跃计数}}return step;
}
复杂度分析
时间复杂度为 O(n),其中 nnn 是数组长度。
空间复杂度为 O(1)。
相关文章:
【力扣】45.跳跃游戏Ⅱ
45.跳跃游戏Ⅱ 给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。 每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i j] 处: 0 < j < nums[i]i j < n 返回到达 n…...
containerd使用了解
containerd使用了解 yum安装 [rootvm ~]# curl -o /etc/yum.repos.d/docker.repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo [rootvm ~]# yum list | grep containerd containerd.io.x86_64 1.6.28-3.1.el7 doc…...
gateway 分发时若两个服务的路由地址一样,怎么指定访问想要的服务下的地址
1.思路 在使用Spring Cloud Gateway时,如果两个服务的路由地址相同,可以通过Predicate(断言)和Filter(过滤器)的组合来实现根据请求的不同条件将请求分发到不同的服务下的地址。 使用Predicate进行路由条件…...

【LeetCode】三月题解
文章目录 [2369. 检查数组是否存在有效划分](https://leetcode.cn/problems/check-if-there-is-a-valid-partition-for-the-array/)思路:代码: [1976. 到达目的地的方案数](https://leetcode.cn/problems/number-of-ways-to-arrive-at-destination/) 思路…...

云手机:实现便携与安全的双赢
随着5G时代的到来,云手机在各大游戏、直播和新媒体营销中扮演越来越重要的角色。它不仅节约了成本,提高了效率,而且在边缘计算和云技术逐渐成熟的背景下,展现出了更大的发展机遇。 云手机的便携性如何? 云手机的便携性…...

fast_bev学习笔记
目录 一. 简述二. 输入输出三. github资源四. 复现推理过程4.1 cuda tensorrt 版 一. 简述 原文:Fast-BEV: A Fast and Strong Bird’s-Eye View Perception Baseline FAST BEV是一种高性能、快速推理和部署友好的解决方案,专为自动驾驶车载芯片设计。该框架主要包…...

Collection与数据结构链表与LinkedList(三):链表精选OJ例题(下)
1. 分割链表 OJ链接 class Solution {public ListNode partition(ListNode head, int x) {if(head null){return null;//空链表的情况}ListNode cur head;ListNode formerhead null;ListNode formerend null;ListNode latterhead null;ListNode latterend null;//定义…...

05 | Swoole 源码分析之 WebSocket 模块
首发原文链接:Swoole 源码分析之 WebSocket 模块 大家好,我是码农先森。 引言 WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议。它允许客户端和服务器之间进行实时数据传输。 与传统的 HTTP 请求-响应模型不同,WebSocket 可以保持…...
Vue--------父子/兄弟组件传值
父子组件 子组件通过 props 属性来接受父组件的数据,然后父组件在子组件上注册监听事件,子组件通过 emit 触发事件来向父组件发送数据。 defineProps接收 let props defineProps({data: Array, }); defineModel接收 let bb defineModel("sit…...

Qt实现Kermit协议(一)
1 概述 Kermit文件运输协议提供了一条从大型计算机下载文件到微机的途径。它已被用于进行公用数据传输。 其特性如下: Kermit文件运输协议是一个半双工的通信协议。它支持7位ASCII字符。数据以可多达96字节长度的可变长度的分组形式传输。对每个被传送分组需要一个确认。Kerm…...

linux在使用重定向写入文件时(使用标准C库函数时)使处理信号异常(延时)--问题分析
linux在使用重定向写入文件时(使用标准C库函数时)使处理信号异常(延时)–问题分析 在使用alarm函数进行序号处理测试的时候发现如果把输出重定向到文件里面会导致信号的处理出现严重的延迟(ubuntu18) #include <stdio.h> #include <stdlib.h> #include <unist…...

淘宝扭蛋机小程序:趣味购物新体验,惊喜连连等你来
在数字化时代,淘宝始终站在创新的前沿,不断探索和引领电商行业的发展趋势。今天,我们欣然宣布,经过精心研发和打磨,淘宝扭蛋机小程序正式上线,为用户带来一场充满趣味与惊喜的购物新体验。 淘宝扭蛋机小程…...

linux:生产者消费者模型
个人主页 : 个人主页 个人专栏 : 《数据结构》 《C语言》《C》《Linux》 文章目录 前言一、生产者消费者模型二、基于阻塞队列的生产者消费者模型代码实现 总结 前言 本文是对于生产者消费者模型的知识总结 一、生产者消费者模型 生产者消费者模型就是…...

C++教学——从入门到精通 5.单精度实数float
众所周知,三角形的面积公式是(底*高)/2 那就来做个三角形面积计算器吧 到吗如下 #include"bits/stdc.h" using namespace std; int main(){int a,b;cin>>a>>b;cout<<(a*b)/2; } 这不对呀,明明是7.5而他却是7,…...
面向对象设计之单一职责原则
设计模式专栏:http://t.csdnimg.cn/6sBRl 目录 1.单一职责原则的定义和解读 2.如何判断类的职责是否单一 3.类的职责是否越细化越好 4.总结 1.单一职责原则的定义和解读 单一职责原则(Single Responsibility Principle,SRP)的描述:一个类…...

蓝桥杯真题:单词分析
import java.util.Scanner; //1:无需package //2: 类名必须Main, 不可修改 public class Main{public static void main(String[]args) {Scanner sannernew Scanner(System.in);String strsanner.nextLine();int []anew int [26];for(int i0;i<str.length();i) {a[str.charA…...

Python字符串字母大小写变换,高级Python开发技术
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书! ‘’’ demo ‘tHis iS a GOod boOK.’ print(demo.casefold()) print(demo.lower()) print(demo.upper()) print(demo.capitalize()) print(demo.title()) print(dem…...
CentOS常用功能命令集合
1、删除指定目录下所有的空目录 find /xxx -type d -empty -exec rmdir {} 2、删除指定目录下近7天之前的日志文件 find /xxx -name "*.log" -type f -mtime 7 -exec rm -f {} \; 3、查询指定目录下所有的指定格式文件(比如PDF文件) find…...

黑马点评项目笔记 II
基于Stream的消息队列 stream是一种数据类型,可以实现一个功能非常完善的消息队列 key:队列名称 nomkstream:如果队列不存在是否自动创建,默认创建 maxlen/minid:设置消息队列的最大消息数量 *|ID 唯一id:…...
关于一篇知乎答案的重现
〇、前言 早上在逛知乎的时候,瞥见了一篇答案:如何通俗解释Docker是什么?感觉很不错,然后就耐着性子看了下,并重现了作者的整个过程。但是并不顺利,记载一下这些坑。嫌麻烦的话可以直接clone 研究…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...