当前位置: 首页 > news >正文

基于PSO优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1卷积神经网络(CNN)在时间序列中的应用

4.2 长短时记忆网络(LSTM)处理序列依赖关系

4.3 注意力机制(Attention)

5.算法完整程序工程


1.算法运行效果图预览

PSO优化前:

PSO优化后:

2.算法运行软件版本

MATLAB2022A

3.部分核心程序

........................................................................
for i=1:Iterifor j=1:Npeoprng(i+j)if func_obj(x1(j,:))<pbest1(j)p1(j,:)   = x1(j,:);%变量pbest1(j) = func_obj(x1(j,:));endif pbest1(j)<gbest1g1     = p1(j,:);%变量gbest1 = pbest1(j);endv1(j,:) = 0.8*v1(j,:)+c1*rand*(p1(j,:)-x1(j,:))+c2*rand*(g1-x1(j,:));x1(j,:) = x1(j,:)+v1(j,:); for k=1:dimsif x1(j,k) >= tmps(2,k)x1(j,k) = tmps(2,k);endif x1(j,k) <= tmps(1,k)x1(j,k) = tmps(1,k);endendfor k=1:dimsif v1(j,k) >= tmps(2,k)/2v1(j,k) =  tmps(2,k)/2;endif v1(j,k) <= tmps(1,k)/2v1(j,k) =  tmps(1,k)/2;endendendgb1(i)=gbest1 
endfigure;
plot(gb1,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);xlabel('优化迭代次数');
ylabel('适应度值');numHiddenUnits = floor(g1(1))+1
LR             = g1(2)layers = func_model2(Dim,numHiddenUnits);
%设置
%迭代次数
%学习率为0.001
options = trainingOptions('adam', ...       'MaxEpochs', 1500, ...                 'InitialLearnRate', LR, ...          'LearnRateSchedule', 'piecewise', ...  'LearnRateDropFactor', 0.1, ...        'LearnRateDropPeriod', 1000, ...        'Shuffle', 'every-epoch', ...          'Plots', 'training-progress', ...     'Verbose', false);%训练
Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;%网络结构
analyzeNetwork(Net)figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid onsubplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid onsubplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);save R2.mat Num2 Tat_test T_sim2 gb1
121

4.算法理论概述

        时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。粒子群优化(PSO)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。

        粒子群优化(PSO)是一种基于群体智能的全局优化算法。每个粒子代表一个可能的解决方案(即模型超参数组合),通过迭代更新粒子的速度和位置,寻找最优解。对于超参数优化问题,粒子位置Pi​表示模型超参数,速度Vi​表示超参数调整方向和幅度。

4.1卷积神经网络(CNN)在时间序列中的应用

        在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

       CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

4.2 长短时记忆网络(LSTM)处理序列依赖关系

       LSTM单元能够有效捕捉时间序列中的长期依赖关系。在一个时间步t,LSTM的内部状态h_t和隐藏状态c_t更新如下:

       长短时记忆网络是一种特殊的循环神经网络(RNN),设计用于解决长序列依赖问题。在时间序列预测中,LSTM能够有效地捕捉时间序列中的长期依赖关系。

4.3 注意力机制(Attention)

         注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。

       CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下:

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于PSO优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1卷积神经网络&#xff08;CNN&#xff09;在时间序列中的应用 4.2 长短时记忆网络&#xff08;LSTM&#xff09;处理序列依赖关系 4.3 注意力机制&#xff08;Attention&#xff09; 5…...

物联网监控可视化是什么?部署物联网监控可视化大屏有什么作用?

随着物联网技术的深入应用&#xff0c;物联网监控可视化成为了企业数字化转型的关键环节。物联网监控可视化大屏作为物联网监控平台的重要组成部分&#xff0c;能够实时展示物联网设备的运行状态和数据&#xff0c;为企业管理决策和运维监控提供了有力的支持。今天&#xff0c;…...

设计一个Rust线程安全栈结构 Stack<T>

在Rust中&#xff0c;设计一个线程安全的栈结构Stack<T>&#xff0c;类似于Channel<T>&#xff0c;但使用栈的FILO&#xff08;First-In-Last-Out&#xff09;原则来在线程间传送数据&#xff0c;可以通过使用标准库中的同步原语如Mutex和Condvar来实现。下面是一个…...

Docker Desktop 在 Windows 上的安装和使用

目录 1、安装 Docker Desktop 2、使用 Docker Desktop &#xff08;1&#xff09;运行容器 &#xff08;2&#xff09;查看容器信息 &#xff08;3&#xff09;数据挂载 Docker Desktop是Docker的官方桌面版&#xff0c;专为Mac和Windows用户设计&#xff0c;提供了一个简…...

2024年最受欢迎的 19 个 VS Code 主题排行榜

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …...

突破编程_C++_网络编程(OSI 七层模型(物理层与数据链路层))

1 OSI 七层模型概述 OSI&#xff08;Open Systems Interconnection&#xff09;七层模型&#xff0c;即开放系统互联参考模型&#xff0c;起源于 20 世纪 70 年代和 80 年代。随着计算机网络技术的快速发展和普及&#xff0c;不同厂商生产的计算机和网络设备之间的互操作性成为…...

Spring boot如何使用redis缓存

引入依赖 这个是参照若依的&#xff0c;如果没有统一的版本规定的话&#xff0c;这里是需要写版本号的 <!-- redis 缓存操作 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</arti…...

红蓝色WordPress外贸建站模板

红蓝色WordPress外贸建站模板 https://www.mymoban.com/wordpress/5.html...

python爬虫----了解爬虫(十一天)

&#x1f388;&#x1f388;作者主页&#xff1a; 喔的嘛呀&#x1f388;&#x1f388; &#x1f388;&#x1f388;所属专栏&#xff1a;python爬虫学习&#x1f388;&#x1f388; ✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天…...

碳素光线疗法与宠物健康

碳素光线与宠物健康 生息在地球上的所有动物、在自然太阳光奇妙的作用下、生长发育。太阳光的能量使它们不断进化、繁衍种族。现在、生物能够生存、全仰仗于太阳的光线。太阳光线中、包含有动物健康所需要的极为重要的波长。因此、和户外饲养的动物相比、在室内喂养的观赏动物、…...

展锐平台camera添加底层水印

展锐平台camera添加水印&#xff0c;从底层用编码覆盖图像数组&#xff0c;保证上层获取图像水印的一致性 时间水印diff --git a/vendor/sprd/modules/libcamera/hal3_2v6/SprdCamera3HWI.cpp b/vendor/sprd/modules/libcamera/hal3_2v6/SprdCamera3HWI.cpp index f2b704f9d6..…...

OSX-02-Mac OS应用开发系列课程大纲和章节内容设计

本节笔者会详细介绍下本系统专题的大纲&#xff0c;以及每个专题章节的组织结构。这样读者会有一个全局的概念。 在开始前还是在再介绍一下下面这个框架图&#xff0c;因为比较重要&#xff0c;在这里再冗余介绍一下。开发Apple公司相关产品的软件时&#xff0c;主要有两个框架…...

热门IT【视频教程】-华为/思科/红帽/oracle

华为认证 网络工程师-入门基础课&#xff1a;华为HCIA认证课程介绍-CSDN博客 网络工程师进阶课&#xff1a;华为HCIP认证课程介绍-CSDN博客 职场进阶&#xff0c;踏上高峰——HCIE-Datacom认证-CSDN博客 华为HCIA试听课程 &#xff1a; 超级实用&#xff0c;华为VRP系统文件…...

HCTNet:一种用于乳腺超声图像分割的混合CNN-transformer

HCTNet&#xff1a;一种用于乳腺超声图像分割的混合CNN-transformer 摘要引言相关工作方法 Materials and methods分割方法 HCTNet_ A hybrid CNN-transformer network for breast ultrasound image segmentation 摘要 乳腺超声图像的自动分割有助于提高乳腺癌诊断的准确性。近…...

766. 托普利茨矩阵

给你一个 m x n 的矩阵 matrix 。如果这个矩阵是托普利茨矩阵&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 如果矩阵上每一条由左上到右下的对角线上的元素都相同&#xff0c;那么这个矩阵是 托普利茨矩阵 。 示例 1&#xff1a; 输入&#xff1a;matr…...

基于STM32的汽车防窒息系统

文章目录 基于STM32的汽车防窒息系统系统简介材料展示视频制作硬件连接原理图PCB实物图GSM模块使用GSM模块代码 SGP30模块SGP30模块代码 步进电机驱动步进电机代码 其他模块主逻辑代码 总结 基于STM32的汽车防窒息系统 系统简介 随着社会的发展目前汽车的流行&#xff0c;汽车大…...

GoogleNet神经网络介绍

一、简介 GoogleNet&#xff0c;也称为GoogLeNet&#xff0c;是谷歌工程师设计的一种深度神经网络结构&#xff0c;它在2014年的ImageNet图像识别挑战赛中取得了冠军。该神经网络的设计特点主要体现在其深度和宽度上&#xff0c;通过引入名为Inception的核心子网络结构&#x…...

AI水下颜色校正解决方案,助力企业打造水下视觉盛宴

水下摄影作为一种独特且富有挑战性的拍摄方式&#xff0c;正受到越来越多旅行者和摄影师的青睐。然而由于海水的光线折射和金属成分的影响&#xff0c;水下拍摄的照片和视频往往存在严重的偏色问题&#xff0c;无法真实还原水下世界的美丽与神奇。美摄科技凭借深厚的技术积累和…...

LINUX笔记温习

目录 DAY1 DAY2 day3&#xff1a; day4 day5 day6 day7 day8 day9 day10 day11 day12 day13 day14 day15 20day DAY1 1、多层级文件夹创建要带-p&#xff1b; 2、创建多文件&#xff0c;要先到该目录下才能创建(第一个目录必须存在才能有效建立)&#xff1b; D…...

钉钉服务端API报错 43008 参数需要multipart类型

钉钉服务端API报错 43008 参数需要multipart类型 problem 使用媒体文件上传接口&#xff0c;按照文档输入参数&#xff0c;结果返回报错 # 参数 {"access_token": "xxx""type": "image","media": "/Users/xxx/xxx/s…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

实战设计模式之模板方法模式

概述 模板方法模式定义了一个操作中的算法骨架&#xff0c;并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下&#xff0c;重新定义算法中的某些步骤。简单来说&#xff0c;就是在一个方法中定义了要执行的步骤顺序或算法框架&#xff0c;但允许子类…...