【STM32】进阶(二):DMA+ADC实现模拟量检测
1、简述
DMA:Direct Memory Access,直接内存访问
ADC:Analog to Digital Converter,模数转换器,模拟信号转换成数字信号的电路(采样-量化-编码)
参考博客:
STM32DMA功能详解
STM32F4之ADC介绍
DMA传输将数据从一个地址空间复制到另一个地址空间,提供在外设和存储器之间或者存储器和存储器之间的高速数据传输。这里的存储器可以是片内的SRAM(默认存放变量)或者是FLASH(默认存放常量,被const修饰的全局变量可以看成是常量类型),而外设指的其实是外设的数据寄存器。但它们本质上是一样的,都是从内存的某一区域传输到内存的另一区域(外设的数据寄存器本质上就是内存的一个存储单元)。
我们知道CPU有转移数据、计算、控制程序转移等很多功能,系统运作的核心就是CPU,CPU无时不刻的在处理着大量的事务,但有些事情却没有那么重要,比方说数据的复制和存储数据,DMA的主要功能是用来搬数据,在传输数据的时候,CPU就可以不被占用用来干其他事情,对于实时性要求比较高的场合,我们可以利用DMA来减小CPU的负担。
因此:转移数据(尤其是转移大量数据)是可以不需要CPU参与。比如希望外设A的数据拷贝到外设B,只要给两种外设提供一条数据通路,直接让数据由A拷贝到B不经过CPU的处理,通过DMA解决大量数据转移过度消耗CPU资源的问题。
2、模拟量检测
2.1 初始化步骤
模拟量检测,需要将GPIO引脚设置为模拟输入模式、设置模数转换ADC、设置DMA等,完整初始化步骤如下
初始化时钟
初始化GPIO
初始化ADC
初始化DMA
使能ADC
使能DMA
2.2 初始化时钟
void RCC_Configuration(void)
{# a) DMA1 的时钟RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); # b) 使能GPIO 和 ADC1 的时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |RCC_APB2Periph_ADC1, ENABLE );# c) 因为ADC时钟不要超过14M,否则精度会下降,因此设置ADC分频因子=6,即72M/6=12MRCC_ADCCLKConfig(RCC_PCLK2_Div6);
}
2.3 初始化GPIO
void GPIO_Configuration(void)
{GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; # a)将引脚设置为模拟输入引脚GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);
}
2.4 初始化ADC
void ADC1_Configuration(void)
{ADC_InitTypeDef ADC_InitStructure;# a)将外设ADC1的全部寄存器重设为缺省值ADC_DeInit(ADC1); # b)设置为独立工作模式(ADC1和ADC2工作在独立模式)ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; # c)使能扫描模式ADC_InitStructure.ADC_ScanConvMode =ENABLE; # d)连续转换模式ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; # e)关闭外部触发转换ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; # f)ADC数据右对齐ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; # g)按顺序规划转换的 ADC 通道的数目ADC_InitStructure.ADC_NbrOfChannel = M; ADC_Init(ADC1, &ADC_InitStructure); # h)设置转换顺序和时间ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5 );# i)使能 ADC 的 DMA功能ADC_DMACmd(ADC1, ENABLE);# j)使能指定ADC,这里是ADC1ADC_Cmd(ADC1, ENABLE);# k)复位指定 ADC1 的校准寄存器ADC_ResetCalibration(ADC1); # l)等待完成复位校准寄存器while(ADC_GetResetCalibrationStatus(ADC1)); # m)开始指定 ADC1 的校准状态ADC_StartCalibration(ADC1); /# n)等待获取 ADC1 的校准状态while(ADC_GetCalibrationStatus(ADC1));
}
2.5 初始化DMA
void DMA_Configuration(void)
{DMA_InitTypeDef DMA_InitStructure;# a)将 DMA 的通道1寄存器重置为缺省值DMA_DeInit(DMA1_Channel1); # b)DMA 外设基地址指向 ADC1DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)&ADC1->DR; # c)设置内存基地址DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&AD_Value;# d)将内存作为数据传输的目的地 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; # e)DMA 的缓存大小DMA_InitStructure.DMA_BufferSize = N*M; # f)外设地址寄存器不变DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;# g)内存地址寄存器递增DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;# h)外设数据宽度为16位DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;# i)内存数据宽度为16位DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; # j)循环缓存模式DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;# k)高优先级DMA_InitStructure.DMA_Priority = DMA_Priority_High;# l)这里是外设到内存直接传输,因此关闭内存到内存模式DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;DMA_Init(DMA1_Channel1, &DMA_InitStructure);
}
2.6 使能ADC 和 DMA
ADC_SoftwareStartConvCmd(ADC1, ENABLE);DMA_Cmd(DMA1_Channel1, ENABLE);
2.7 使用数据
使能后,从ADC1采集的模数转换后的值将循环存储在数组AD_Value中,对AD_Value中数据求平均值即可
#define N 50
#define M 1
vu16 AD_Value[N][M];
vu16 After_filter[M];
int i;void filter(void)
{int sum = 0;u8 count;for ( count=0;count<N;count++){sum += AD_Value[count][0];}After_filter[0]=sum/N;sum=0;
}
3、时钟设置小结
3.1 GPIO作为输出时
如:点亮LED灯实验时,开启GPIOB的时钟:
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIO,ENABLE);
3.2 GPIO作为输入时(轮询方式)
如:按键实验,将PA0作为按键
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
3.3 GPIO作为输入时(中断方式)
如:按键实验,将PC13作为按键,以中断方式打开,需要打开复用时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO,ENABLE);
3.4 配置串口UASRT
需要先设置引脚的时钟,然后设置串口的时钟。
如:配置UASRT1时,用到了PA9和PA10,所有要开启GPIOA的时钟,另外还有开启USART1的时钟。
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);
3.5 配置DMA
DMA挂载在AHB总线上
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE);
3.6 配置基本定时器
基本定时器挂载在APB1总线上
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM6,ENABLE);
3.7 配置通用定时器
通用定时器挂载在APB1总线上。
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);
3.8 其它注意事项
1)配置按键中断时,只需要开启相应的GPIO的时钟。初始化EXTI结构体时,不需要开启EXTI时钟。
2)配置NVIC中断向量控制器时,不需要开启时钟。
3)使用SysTick系统定时器时,不需要开启时钟。
相关文章:
【STM32】进阶(二):DMA+ADC实现模拟量检测
1、简述 DMA:Direct Memory Access,直接内存访问 ADC:Analog to Digital Converter,模数转换器,模拟信号转换成数字信号的电路(采样-量化-编码) 参考博客: STM32DMA功能详解 STM32…...
Lab2_Simple Shell_2020
Lab2: 实验目的:给xv6添加新的系统调用 并理解系统调用是如何工作的,并理解xv6内核的一些内部特征 实验准备: 阅读xv6的第2章以及第4章的4.3,4.3小节熟悉下面的源码 用户态相关的代码:user/user.h和user/usys.pl内核态相关的代…...
2023最全电商API接口 高并发请求 实时数据 支持定制 电商数据 买家卖家数据
电商日常运营很容易理解,就是店铺商品维护,上下架,评价维护,库存数量,协助美工完成制作详情页。店铺DSR,好评率,提升客服服务等等,这些基础而且每天都必须做循环做的工作。借助电商A…...
MySQL 的索引类型
1. 按照功能划分 按照功能来划分,索引主要有四种: 普通索引唯一性索引主键索引全文索引 普通索引就是最最基础的索引,这种索引没有任何的约束作用,它存在的主要意义就是提高查询效率。 普通索引创建方式如下: CREATE…...
< Linux > 进程信号
目录 1、信号入门 生活角度的信号 技术应用角度的信号 前台进程 && 后台进程 信号概念 用kill -l命令察看系统定义的信号列表 信号处理的方式 2、信号产生前 用户层产生信号的方式 3、产生信号 3.1、通过终端按键产生信号 3.2、核心转储core dump 3.3、调用系统函数…...
Pyspark基础入门7_RDD的内核调度
Pyspark 注:大家觉得博客好的话,别忘了点赞收藏呀,本人每周都会更新关于人工智能和大数据相关的内容,内容多为原创,Python Java Scala SQL 代码,CV NLP 推荐系统等,Spark Flink Kafka Hbase Hi…...
C/C++每日一练(20230307)
目录 1. 国名排序 ★★ 2. 重复的DNA序列 ★★★ 3. 买卖股票的最佳时机 III ★★★ 🌟 每日一练刷题专栏 C/C 每日一练 专栏 Python 每日一练 专栏 1. 国名排序 小李在准备明天的广交会,明天有来自世界各国的客房跟他们谈生意,…...
一条SQL查询语句是如何执行的?
平时我们使用数据库,看到的通常都是一个整体。比如,你有个最简单的表,表里只有一个ID字段,在执行下面这个查询语句时: mysql> select * from T where ID10; 我们看到的只是输入一条语句,返…...
tcsh常用配置
查看当前的shell类型 在 Linux 的世界中,有着许多 shell 程序。常见的有: Bourne shell (sh) C shell (csh) TC shell (tcsh) Korn shell (ksh) Bourne Again shell (bash) 其中,最常用的就是bash和tcsh,本次文章介绍tcsh的…...
YOLOv5源码逐行超详细注释与解读(2)——推理部分detect.py
前言 前面简单介绍了YOLOv5的项目目录结构(直通车:YOLOv5源码逐行超详细注释与解读(1)——项目目录结构解析),对项目整体有了大致了解。 今天要学习的是detect.py。通常这个文件是用来预测一张图片或者一…...
什么叫个非对称加密?中间人攻击?数字签名?
非对称加密也称为公钥密码。就是用公钥来进行加密,撒子意思? 非对称加密 在对称加密中,我们只需要一个密钥,通信双方同时持有。而非对称加密需要4个密钥,来完成完整的双方通信。通信双方各自准备一对公钥和私钥。其中…...
2023.03.07 小记与展望
碎碎念系列全新改版! 以后就叫小记和展望系列 最近事情比较多,写篇博客梳理一下自己3月到5月下旬的一个规划 一、关于毕设 毕设马上开题答辩了,准备再重新修改一下开题报告,梳理各阶段目标。 毕设是在去年的大学生创新训练项目…...
MyBatis源码分析(七)MyBatis与Spring的整合原理与源码分析
文章目录写在前面一、SqlSessionFactoryBean配置SqlSessionFactory1、初识SqlSessionFactoryBean2、实现ApplicationListener3、实现InitializingBean接口4、实现FactoryBean接口5、构建SqlSessionFactory二、SqlSessionTemplate1、初始SqlSessionTemplate2、SqlSessionTemplat…...
基于声网 Flutter SDK 实现多人视频通话
前言 本文是由声网社区的开发者“小猿”撰写的Flutter基础教程系列中的第一篇。本文除了讲述实现多人视频通话的过程,还有一些 Flutter 开发方面的知识点。该系列将基于声网 Fluttter SDK 实现视频通话、互动直播,并尝试虚拟背景等更多功能的实现。 如果…...
IT服务管理(ITSM) 中的大数据
当我们谈论IT服务管理(ITSM)领域的大数据时,我们谈论的是关于两件不同的事情: IT 为业务提供的大数据工具/服务 - 对业务运营数据进行数字处理。IT 运营中的大数据 – 处理和利用复杂的 IT 运营数据。 面向业务运营的大数据服务…...
Validator校验之ValidatorUtils
注意:hibernate-validator 与 持久层框架 hibernate 没有什么关系,hibernate-validator 是 hibernate 组织下的一个开源项目 。 hibernate-validator 是 JSR 380(Bean Validation 2.0)、JSR 303(Bean Validation 1.0&…...
C++---背包模型---采药(每日一道算法2023.3.7)
注意事项: 本题是"动态规划—01背包"的扩展题,dp和优化思路不多赘述。 题目: 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。 为此,他想拜附近最有威望的医师为师。 医师为了判断他的资质&…...
Java各种锁
目录 一、读写锁(ReentrantReadWriteLock) 二、非公平锁(synchronized/ReentrantLock) 三、可重入锁/递归锁(synchronized/ReentrantLock) 四、自旋锁(spinlock) 五、乐观锁/悲观锁 六、死锁 1、死锁代码 2、死锁的检测(jps -l 与 jstack 进程号) 七、sychronized-wait…...
TryHackMe-Tardigrade(应急响应)
Tardigrade 您能否在此 Linux 端点中找到所有基本的持久性机制? 服务器已遭到入侵,安全团队已决定隔离计算机,直到对其进行彻底清理。事件响应团队的初步检查显示,有五个不同的后门。你的工作是在发出信号以使服务器恢复生产之前…...
导出GIS | 将EXCEL表格中坐标导出成GIS格式文件
一 前言 EXCEL是我们日常工作学习数据处理的办公软件,操作易上手,几乎人人都会用。EXCEL表格能够处理各种数据,包括经纬度坐标数据,地址数据等等。 有时因工作需要需将表格中地址数据处理为GIS格式的文件,以便能够将数…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...
