当前位置: 首页 > news >正文

算法学习——LeetCode力扣图论篇1(797. 所有可能的路径、200. 岛屿数量、695. 岛屿的最大面积)

算法学习——LeetCode力扣图论篇1

在这里插入图片描述

797. 所有可能的路径

797. 所有可能的路径 - 力扣(LeetCode)

描述

给你一个有 n 个节点的 有向无环图(DAG),请你找出所有从节点 0 到节点 n-1 的路径并输出(不要求按特定顺序)

graph[i] 是一个从节点 i 可以访问的所有节点的列表(即从节点 i 到节点 graph[i][j]存在一条有向边)。

示例

示例 1:
在这里插入图片描述

输入:graph = [[1,2],[3],[3],[]]
输出:[[0,1,3],[0,2,3]]
解释:有两条路径 0 -> 1 -> 3 和 0 -> 2 -> 3

示例 2:

在这里插入图片描述

输入:graph = [[4,3,1],[3,2,4],[3],[4],[]]
输出:[[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]

提示

n == graph.length
2 <= n <= 15
0 <= graph[i][j] < n
graph[i][j] != i(即不存在自环)
graph[i] 中的所有元素 互不相同
保证输入为 有向无环图(DAG)

代码解析

class Solution {
public:vector<vector<int>> result;vector<int> path;void dfs(vector<vector<int>>& graph , int indnx){if(indnx == graph.size()-1) {path.push_back(graph.size()-1);result.push_back(path);path.pop_back();return;}for(int i=0 ; i<graph[indnx].size() ;i++){path.push_back(indnx);dfs(graph,graph[indnx][i]);path.pop_back();}return;}vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {dfs(graph,0);return result;}
};

200. 岛屿数量

200. 岛屿数量 - 力扣(LeetCode)

描述

给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

示例

示例 1:

输入:grid = [
[“1”,“1”,“1”,“1”,“0”],
[“1”,“1”,“0”,“1”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“0”,“0”,“0”]
]
输出:1

示例 2:

输入:grid = [
[“1”,“1”,“0”,“0”,“0”],
[“1”,“1”,“0”,“0”,“0”],
[“0”,“0”,“1”,“0”,“0”],
[“0”,“0”,“0”,“1”,“1”]
]
输出:3

提示

m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j] 的值为 ‘0’ 或 ‘1’

代码解析

深度优先搜索dfs
class Solution {
public:int result = 0;int m =0 ,n=0;int dir[4][2] = {0,1, 0,-1 , -1,0 , 1,0};void dfs(vector<vector<char>>& grid , vector<vector<bool>> &path , int x , int y){for(int i=0 ; i<4 ;i++){int next_x = x + dir[i][0];int next_y = y + dir[i][1];if(next_x<0||next_x>=m||next_y<0||next_y>=n) continue;else if( path[next_x][next_y] == false && grid[next_x][next_y] == '1') {   path[next_x][next_y] = true;dfs(grid,path,next_x,next_y);}}return;}int numIslands(vector<vector<char>>& grid) {m = grid.size();n = grid[0].size();vector<vector<bool>> path( m , vector<bool>( n ,false) );for(int i=0 ; i<m ;i++){for(int j=0 ; j<n ;j++){if(path[i][j] == false && grid[i][j] == '1'){result++;path[i][j] = true;dfs(grid,path,i,j);}}}return result;}
};
广度优先搜索bfs
class Solution {
public:int result = 0;int m =0 ,n=0;int dir[4][2] = {0,1, 0,-1 , -1,0 , 1,0};void bfs(vector<vector<char>>& grid , vector<vector<bool>> &path , int x , int y){queue<pair<int,int>> my_que;my_que.push({x,y});path[x][y] = true;while(my_que.size() != 0){pair<int,int> cur = my_que.front();my_que.pop();for(int i=0 ; i<4 ;i++){int next_x = cur.first + dir[i][0];int next_y = cur.second + dir[i][1];if(next_x<0||next_x>=m||next_y<0||next_y>=n) continue;else if( path[next_x][next_y] == false && grid[next_x][next_y] == '1') {   my_que.push({next_x,next_y});path[next_x][next_y] = true;}}}return;}int numIslands(vector<vector<char>>& grid) {m = grid.size();n = grid[0].size();vector<vector<bool>> path( m , vector<bool>( n ,false) );for(int i=0 ; i<m ;i++){for(int j=0 ; j<n ;j++){if(path[i][j] == false && grid[i][j] == '1'){result++;path[i][j] = true;bfs(grid,path,i,j);}}}return result;}
};

695. 岛屿的最大面积

695. 岛屿的最大面积 - 力扣(LeetCode)

描述

给你一个大小为 m x n 的二进制矩阵 grid 。

岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。

岛屿的面积是岛上值为 1 的单元格的数目。

计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0 。

示例

示例 1:
在这里插入图片描述

输入:grid = [[0,0,1,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,1,1,0,1,0,0,0,0,0,0,0,0],[0,1,0,0,1,1,0,0,1,0,1,0,0],[0,1,0,0,1,1,0,0,1,1,1,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,0,0,0,0,0,0,1,1,0,0,0,0]]
输出:6
解释:答案不应该是 11 ,因为岛屿只能包含水平或垂直这四个方向上的 1 。
示例 2:

输入:grid = [[0,0,0,0,0,0,0,0]]
输出:0

提示

m == grid.length
n == grid[i].length
1 <= m, n <= 50
grid[i][j] 为 0 或 1

代码解析

class Solution {
public:int dir[4][2] = {0,1,0,-1,-1,0,1,0};int m=0,n=0;int result = 0;int tmp_result = 0;void dfs(vector<vector<int>>& grid , vector<vector<bool>> &path , int x ,int y){for(int i=0 ; i<4 ;i++){int next_x = x + dir[i][0];int next_y = y + dir[i][1];if(next_x<0 || next_x>=m || next_y<0 || next_y>=n) continue;if(grid[next_x][next_y] == 1 && path[next_x][next_y] == false){tmp_result++;path[next_x][next_y] = true;dfs(grid,path,next_x,next_y);}}}int maxAreaOfIsland(vector<vector<int>>& grid) {m = grid.size();n = grid[0].size();vector<vector<bool>> path(m , vector<bool>( n , false ));for(int i=0 ; i<m ;i++){for(int j=0 ; j<n ;j++){if(grid[i][j] == 1 && path[i][j] == false){path[i][j] = true;tmp_result = 1;dfs(grid,path,i,j);if(tmp_result > result) result =tmp_result;}}}return result;}
};

相关文章:

算法学习——LeetCode力扣图论篇1(797. 所有可能的路径、200. 岛屿数量、695. 岛屿的最大面积)

算法学习——LeetCode力扣图论篇1 797. 所有可能的路径 797. 所有可能的路径 - 力扣&#xff08;LeetCode&#xff09; 描述 给你一个有 n 个节点的 有向无环图&#xff08;DAG&#xff09;&#xff0c;请你找出所有从节点 0 到节点 n-1 的路径并输出&#xff08;不要求按特…...

【IP组播】PIM-SM的RP、RPF校验

目录 一&#xff1a;PIM-SM的RP 原理概述 实验目的 实验内容 实验拓扑 1.基本配置 2.配置IGP 3.配置PIM-SM和静态RP 4.配置动态RP 5.配置Anycast RP 二&#xff1a; RPF校验 原理概述 实验目的 实验内容 实验拓扑 1.基本配置 2.配置IGP 3.配置PIM-DM 4.RPF校…...

前端代码规范-命名规范

命名规则 camelCase&#xff08;小驼峰式命名法 —— 首字母小写&#xff09;PascalCase&#xff08;大驼峰式命名法 —— 首字母大写&#xff09;kebab-case&#xff08;短横线连接式&#xff09;Snake&#xff08;下划线连接式&#xff09; 项目名称 项目名 全部采用小写方…...

移动端APP测试常见面试题精析

现在面试测试职位&#xff0c;要求非常全面&#xff0c;那么APP测试一般需要哪些技术呢&#xff1f;下面总结了APP测试常见面试题&#xff1a; 1.Android四大组件? Activity:描述UI&#xff0c;并且处理用户与机器屏幕的交互。应用程序中&#xff0c;一个Activity就相当于手…...

报错[Vue warn]: $listeners is readonly. $attrs is readonly.怎么解决?

代码也没有逻辑错误&#xff0c;但是报错 [Vue warn]: $listeners is readonly. $attrs is readonly. 情况1&#xff1a;多处声明了new Vue&#xff0c;解决方案&#xff1a;删除一个&#xff0c;用全局变量引用同一个Vue 情况2&#xff1a;import Vue from Vue;第二个Vue首字…...

android 14 apexd分析(1)apexd bootstrap

Apex的由来,我们都知道普通的apk我们可以通过应用商店playstore等进行更新,apex的引入是google希望也能通过playstore更新bin文件.so etc配置文件等类型文件. 这些文件的安装实际通过apexd来进行,现在我们来解析一下apexd, apexd的启动分为两个阶段,bootstrap和普通apexd启…...

C++ 中的 vector 的模拟实现【代码纯享】

文章目录 C 中的 vector 模拟实现1. vector 的基本概念2. vector 的基本操作3. vector 的模拟实现4.代码纯享5. 总结 C 中的 vector 模拟实现 在 C 中&#xff0c;vector 是一个非常重要的容器&#xff0c;它提供了动态数组的功能。在本篇博客中&#xff0c;我们将尝试模拟实现…...

UE4 方块排序动画

【动画效果】 入动画&#xff1a; 出动画&#xff1a; 【分析】 入动画&#xff1a;方块动画排序方式为Z字形&#xff0c;堆砌方向为X和Y轴向 出动画&#xff1a;方块动画排序方式为随机 【关键蓝图】 1.构建方块砌体 2.入/出动画...

网络与并发编程(一)

并发编程介绍_串行_并行_并发的区别 串行、并行与并发的区别 串行(serial)&#xff1a;一个CPU上&#xff0c;按顺序完成多个任务并行(parallelism)&#xff1a;指的是任务数小于等于cpu核数&#xff0c;即任务真的是一起执行的并发(concurrency)&#xff1a;一个CPU采用时间…...

超详细工具Navicat安装教程

Navicat是一款功能强大的数据库管理工具&#xff0c;可用于管理多种类型的数据库&#xff0c;包括MySQL、MariaDB、SQL Server、SQLite、Oracle和PostgreSQL等。以下是Navicat工具的一些主要特点和功能&#xff1a; 一.功能介绍 跨平台支持 多种数据库支持 直观的用户界面 数据…...

RN在android/ios手机剪切图片的操作

之前写过一个React Native调用摄像头画面及拍照和保存图片到相册全流程但是这个仅限于调用摄像头拍照并保存图片,今天再写一个版本的操作,这个博客目前实现的有三点操作: 调用摄像头拍照对照片进行剪切从相册选取图片 功能上面来说有两点: 点击按钮可以对摄像头进行拍照,拍完照…...

C语言 | Leetcode C语言题解之第6题Z字形变换

题目&#xff1a; 题解&#xff1a; char * convert(char * s, int numRows){int n strlen(s), r numRows;if (r 1 || r > n) {return s;}int t r * 2 - 2;char * ans (char *)malloc(sizeof(char) * (n 1));int pos 0;for (int i 0; i < r; i) { // 枚举矩阵的…...

C 回调函数的两种使用方法

对回调&#xff08;callback&#xff09;函数的一点粗陋理解&#xff0c;在我小时候&#xff0c;隔壁村有家月饼小作坊&#xff08;只在中秋那段时间手工制作一些月饼出售&#xff0c;后来好像不做了&#xff09;&#xff0c;做出的月饼是那种很传统很经典的款式&#xff0c;里…...

医院云HIS系统源码,二级医院、专科医院his系统源码,经扩展后能够应用于医联体/医共体

基于云计算技术的B/S架构的HIS系统&#xff0c;为医疗机构提供标准化的、信息化的、可共享的医疗信息管理系统&#xff0c;实现医患事务管理和临床诊疗管理等标准医疗管理信息系统的功能。 系统利用云计算平台的技术优势&#xff0c;建立统一的云HIS、云病历、云LIS&#xff0…...

NineData云原生智能数据管理平台新功能发布|2024年3月版

数据库 DevOps - 大功能升级 SQL 开发早期主要提供 SQL 窗口&#xff08;IDE&#xff09;功能&#xff0c;在产品经过将近两年时间的打磨&#xff0c;新增了大量的企业级功能&#xff0c;已经服务了上万开发者&#xff0c;覆盖了数据库设计、开发、测试、变更等生命周期的功能…...

java Web 疫苗预约管理系统用eclipse定制开发mysql数据库BS模式java编程jdbc

一、源码特点 JSP 疫苗预约管理系统是一套完善的web设计系统&#xff0c;对理解JSP java 编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,eclipse开发&#xff0c;数据库为Mysql5.0&#xff0c;使…...

Qt5.14.2 揭秘Qt日志神器高效诊断程序潜在隐疾

对程序员而言&#xff0c;代码中的bug往往如同无影无踪的隐疾&#xff0c;影响着程序的健康运行。而及时有效的诊断手段则是治疗这些隐疾的良药。今天&#xff0c;我们将一窥Qt日志框架QLoggingCategory的神奇功效&#xff0c;探究它如何为你的Qt应用程序构筑坚实的诊断防火墙。…...

Mac上设置环境变量PATH

一、配置文件有哪些 在Mac系统中&#xff0c;环境变量的配置文件主要包括以下几个&#xff1a; 文件名称描述/etc/paths系统级别的配置文件&#xff0c;系统启动时会加载它。/etc/profile系统级别的配置文件&#xff0c;所有用户登录时都会读取该文件。~/.bash_profile用户级别…...

Redis 全景图(1)--- 关于 Redis 的6大模块

这是我第一次尝试以长文的形式写一篇 Redis 的总结文章。这篇文章我想写很久了&#xff0c;只是一直碍于我对 Redis 的掌握没有那么的好&#xff0c;因此迟迟未动笔。这几天&#xff0c;我一直在看各种不同类型的 Redis 文章&#xff0c;通过阅读这些文章&#xff0c;引发了我对…...

Lambda表达式,Stream流

文章目录 Lambda表达式作用前提函数式接口特点 语法省略模式和匿名对象类的区别 Stream流思想作用三类方法获取方法单列集合(Collection[List,Set双列集合Map(不能直接获取)数组同一类型元素(Stream中的静态方法) 常见的中间方法终结方法收集方法 Optional类 Lambda表达式 作用…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

DiscuzX3.5发帖json api

参考文章&#xff1a;PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下&#xff0c;适配我自己的需求 有一个站点存在多个采集站&#xff0c;我想通过主站拿标题&#xff0c;采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...

Matlab实现任意伪彩色图像可视化显示

Matlab实现任意伪彩色图像可视化显示 1、灰度原始图像2、RGB彩色原始图像 在科研研究中&#xff0c;如何展示好看的实验结果图像非常重要&#xff01;&#xff01;&#xff01; 1、灰度原始图像 灰度图像每个像素点只有一个数值&#xff0c;代表该点的​​亮度&#xff08;或…...

UE5 音效系统

一.音效管理 音乐一般都是WAV,创建一个背景音乐类SoudClass,一个音效类SoundClass。所有的音乐都分为这两个类。再创建一个总音乐类&#xff0c;将上述两个作为它的子类。 接着我们创建一个音乐混合类SoundMix&#xff0c;将上述三个类翻入其中&#xff0c;通过它管理每个音乐…...

简单介绍C++中 string与wstring

在C中&#xff0c;string和wstring是两种用于处理不同字符编码的字符串类型&#xff0c;分别基于char和wchar_t字符类型。以下是它们的详细说明和对比&#xff1a; 1. 基础定义 string 类型&#xff1a;std::string 字符类型&#xff1a;char&#xff08;通常为8位&#xff09…...

【读代码】从预训练到后训练:解锁语言模型推理潜能——Xiaomi MiMo项目深度解析

项目开源地址:https://github.com/XiaomiMiMo/MiMo 一、基本介绍 Xiaomi MiMo是小米公司开源的7B参数规模语言模型系列,专为复杂推理任务设计。项目包含基础模型(MiMo-7B-Base)、监督微调模型(MiMo-7B-SFT)和强化学习模型(MiMo-7B-RL)等多个版本。其核心创新在于通过…...

无人机避障——感知部分(Ubuntu 20.04 复现Vins Fusion跑数据集)胎教级教程

硬件环境&#xff1a;NVIDIA Jeston Orin nx 系统&#xff1a;Ubuntu 20.04 任务&#xff1a;跑通 EuRoC MAV Dataset 数据集 展示结果&#xff1a; 编译Vins Fusion 创建工作空间vins_ws # 创建目录结构 mkdir -p ~/vins_ws/srccd ~/vins_ws/src# 初始化工作空间&#xf…...