基于opencv的猫脸识别模型
opencv介绍
OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。该程序库也可以使用英特尔公司的IPP进行加速处理。
读取图片
opoencv提供相应的函数方便我们读取相关图片,打开并展示他
#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#显示图片
cv.imshow('read_img',img)
#等待
cv.waitKey(0)
#释放内存
cv.destroyAllWindows()
灰度转换
首先我们介绍一下灰度图像,看看他的定义:
在电子计算机领域中,灰度(Gray scale)数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以是任何颜色的不同深浅,甚至可以是不同亮度上的不同颜色。灰度图像与黑白图像不同,在计算机图像领域中黑白图像只有黑白两种颜色,灰度图像在黑色与白色之间还有许多级的颜色深度。
通俗的讲灰度图像就是把每个像素只有一个颜色的图像,一般来讲都是黑白;那么我们为什么需要将普通图像转化为灰度图像呢?
因为彩色图像中的每个像素颜色由R、G、B三个分量来决定,而每个分量的取值范围都在0-255之间,这样对计算机来说,彩色图像的一个像素点就会有256256256=16777216种颜色的变化范围;而灰度图像是R、G、B分量相同的一种特殊彩色图像,对计算机来说,一个像素点的变化范围只有0-255这256种。彩色图片的信息含量过大,而进行图片识别时,其实只需要使用灰度图像里的信息就足够了,所以图像灰度化的目的就是为了提高运算速度。
当然,有时图片进行了灰度处理后还是很大,也有可能会采用二值化图像(即像素值只能为0或1)。
我们可以通过调用opencv的函数库来实现灰度的转化
#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#灰度转换
gray_img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
#显示灰度图片
cv.imshow('gray',gray_img)
#保存灰度图片
cv.imwrite('gray_face1.jpg',gray_img)
#显示图片
cv.imshow('read_img',img)
#等待
cv.waitKey(0)
#释放内存
cv.destroyAllWindows()
修改尺寸
除了灰度转化的函数,opencv还为我们提供了图像修改相关的函数,这里简单介绍下
#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#修改尺寸
resize_img = cv.resize(img,dsize=(200,200))
#显示原图
cv.imshow('img',img)
#显示修改后的
cv.imshow('resize_img',resize_img)
#打印原图尺寸大小
print('未修改:',img.shape)
#打印修改后的大小
print('修改后:',resize_img.shape)
#等待
while True:if ord('q') == cv.waitKey(0):break
#释放内存
cv.destroyAllWindows()
绘制矩形
在识别到我们想识别的物体后,需要用矩形将他绘制出来,我们这里提供一下相关的函数接口
#导入cv模块
import cv2 as cv
#读取图片
img = cv.imread('face1.jpg')
#坐标
x,y,w,h = 100,100,100,100
#绘制矩形
cv.rectangle(img,(x,y,x+w,y+h),color=(0,0,255),thickness=1)
#绘制圆形
cv.circle(img,center=(x+w,y+h),radius=100,color=(255,0,0),thickness=5)
#显示
cv.imshow('re_img',img)
while True:if ord('q') == cv.waitKey(0):break
#释放内存
cv.destroyAllWindows()
猫脸检测
我们这里用到opencv自带的文件来构建我们的检测模型,从而从图像上迅速识别到猫脸,以下代码是用的人脸识别的文件,如果要做测试可以把 haarcascade_frontalface_alt2.xml 换成猫脸相关的xml文件
#导入cv模块
import cv2 as cv
#检测函数
def face_detect_demo():gary = cv.cvtColor(img,cv.COLOR_BGR2GRAY)face_detect = cv.CascadeClassifier(r'C:\Users\33718\Desktop\face\opencv\data\haarcascades\haarcascade_frontalface_alt2.xml')face = face_detect.detectMultiScale(gary,1.01,5,0,(100,100),(300,300))for x,y,w,h in face:cv.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)cv.imshow('result',img)#读取图像
img = cv.imread(r'C:\Users\33718\Desktop\face\opencv\data\jm\1.lena.jpg')
#检测函数
face_detect_demo()
#等待
while True:if ord('q') == cv.waitKey(0):break
#释放内存
cv.destroyAllWindows()
训练数据
我们事先准备数据,并且按照如下格式命名:

然后我们运行以下代码,就能获得一个训练好的yml文件
import os
import cv2
import sys
from PIL import Image
import numpy as npdef getImageAndLabels(path):facesSamples=[]ids=[]imagePaths=[os.path.join(path,f) for f in os.listdir(path)]#检测猫脸face_detector = cv2.CascadeClassifier('C:/Users/33718/Desktop/face/catface/data/haarcascades/haarcascade_frontalcatface_extended.xml')#打印数组imagePathsprint('数据排列:',imagePaths)#遍历列表中的图片for imagePath in imagePaths:#打开图片,黑白化PIL_img=Image.open(imagePath).convert('L')#将图像转换为数组,以黑白深浅# PIL_img = cv2.resize(PIL_img, dsize=(400, 400))img_numpy=np.array(PIL_img,'uint8')#获取图片人脸特征faces = face_detector.detectMultiScale(img_numpy)#获取每张图片的id和姓名id = int(os.path.split(imagePath)[1].split('.')[0])#预防无面容照片for x,y,w,h in faces:ids.append(id)facesSamples.append(img_numpy[y:y+h,x:x+w])#打印脸部特征和id#print('fs:', facesSamples)print('id:', id)# print('fs:', facesSamples[id])print('fs:', facesSamples)#print('脸部例子:',facesSamples[0])#print('身份信息:',ids[0])return facesSamples,idsif __name__ == '__main__':#图片路径path='./data/photos/'#获取图像数组和id标签数组和姓名faces,ids=getImageAndLabels(path)#获取训练对象recognizer=cv2.face.LBPHFaceRecognizer_create()#recognizer.train(faces,names)#np.array(ids)recognizer.train(faces,np.array(ids))#保存文件recognizer.write('trainer/trainerCat.yml')#save_to_file('names.txt',names)
猫脸检测
最后我们就可以检测猫猫的图像了,以下是效果图:

import cv2
import numpy as np
import os
# coding=utf-8
import urllib
import urllib.request
import hashlib#加载训练数据集文件
recogizer=cv2.face.LBPHFaceRecognizer_create()
recogizer.read('trainer/trainerCat.yml')
names=[]
warningtime = 0from PIL import Image, ImageDraw, ImageFont
def cv2ImgAddText(img, text, left, top, textColor=(0, 255, 0), textSize=20):if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))# 创建一个可以在给定图像上绘图的对象draw = ImageDraw.Draw(img)# 字体的格式fontStyle = ImageFont.truetype("STSONG.TTF", textSize, encoding="utf-8")# 绘制文本draw.text((left, top), text, textColor, font=fontStyle)# 转换回OpenCV格式return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)#准备识别的图片
def face_detect_demo(img):gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换为灰度# 这里要写绝对路径face_detector=cv2.CascadeClassifier('C:/Users/33718/Desktop/face/catface/data/haarcascades/haarcascade_frontalcatface_extended.xml')# face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(100,100),(300,300))face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,)#face=face_detector.detectMultiScale(gray)for x,y,w,h in face:cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2)cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1)# 人脸识别ids, confidence = recogizer.predict(gray[y:y + h, x:x + w])#print('标签id:',ids,'置信评分:', confidence)if confidence < 60:global warningtimewarningtime += 1if warningtime > 100:# warning()warningtime = 0cv2.putText(img, 'unkonw', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)else:img = cv2ImgAddText(img, str(names[ids-1]), x + 10, y - 10, (255, 0, 0), 30)# cv2.putText(img,str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1)cv2.imshow('result',img)#print('bug:',ids)def name():path = './data/photos/'#names = []imagePaths=[os.path.join(path,f) for f in os.listdir(path)]for imagePath in imagePaths:name = str(os.path.split(imagePath)[1].split('.',2)[1])names.append(name)name()# 摄像头检测
# cap=cv2.VideoCapture(0)
# cap = cv2.VideoCapture('1.mp4')
# while True:
# flag,frame=cap.read()
# if not flag:
# break
# face_detect_demo(frame)
# if ord(' ') == cv2.waitKey(10):
# breakframe = cv2.imread('1.jpg')
while True:# 调用人脸检测函数face_detect_demo(frame)# 等待按键或者一段时间后继续下一次循环if cv2.waitKey(1) & 0xFF == ord('q'):break
源码链接
GitHub
Gitee
🌈🌈🌈
如果对各位看官有帮助,还请看官们点个关注,阿里嘎多~
🌙🌙🌙
代码的路径要换成你自己的绝对路径,opencv的函数只能识别绝对路径,起码我的版本是这样。
相关文章:
基于opencv的猫脸识别模型
opencv介绍 OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及…...
基于注意力整合的超声图像分割信息在乳腺肿瘤分类中的应用
基于注意力整合的超声图像分割信息在乳腺肿瘤分类中的应用 摘要引言方法 Segmentation information with attention integration for classification of breast tumor in ultrasound image 摘要 乳腺癌是世界范围内女性最常见的癌症之一。基于超声成像的计算机辅助诊断&#x…...
数据库重点知识(个人整理笔记)
目录 1. 索引是什么? 1.1. 索引的基本原理 2. 索引有哪些优缺点? 3. MySQL有哪几种索引类型? 4. mysql聚簇和非聚簇索引的区别 5. 非聚簇索引一定会回表查询吗? 6. 讲一讲前缀索引? 7. 为什么索引结构默认使用B…...
[技术闲聊]checklist
电路设计完成后,需要确认功能完整性,明确是否符合设计规格需求;需要确认电路设计是否功能符合但是系列项不符合设计规则,如果都没有问题,那么就可以发给layout工程师。 今天主要讲讲电路设计规则,涉及到一…...
力扣刷题 二叉树的迭代遍历
题干 给你二叉树的根节点 root ,返回它节点值的 前序 遍历。 示例 1: 输入:root [1,null,2,3] 输出:[1,2,3]示例 2: 输入:root [] 输出:[]示例 3: 输入:root [1] 输…...
【二】Django小白三板斧
今日内容 静态文件配置 request对象方法初识 pycharm链接数据库(MySQL) django链接数据库(MySQL) Django ORM简介 利用ORM实现数据的增删查改 【一】Django小白三板斧 HttpResponse 返回字符串类型的数据 render 返回HTML文…...
MyBatis的基本应用
源码地址 01.MyBatis环境搭建 添加MyBatis的坐标 <!--mybatis坐标--><dependency><groupId>org.mybatis</groupId><artifactId>mybatis</artifactId><version>3.5.9</version></dependency><!--mysql驱动坐…...
Day80:服务攻防-中间件安全HW2023-WPS分析WeblogicJettyJenkinsCVE
目录 中间件-Jetty-CVE&信息泄漏 CVE-2021-34429(信息泄露) CVE-2021-28169(信息泄露) 中间件-Jenkins-CVE&RCE执行 cve_2017_1000353 CVE-2018-1000861 cve_2019_1003000 中间件-Weblogic-CVE&反序列化&RCE 应用金山WPS-HW2023-RCE&复现&上线…...
使用generator实现async函数
我们先来看一下async函数是怎么使用的 const getData (sec) > new Promise((resolve) > {setTimeout(() > resolve(sec * 2), sec * 1000);})// aim to get this asycnFun by generator async function asyncFun() {const data1 await getData(1);const data2 awa…...
go并发请求url
sync.WaitGroup写法 package mainimport ("database/sql""fmt""net/http""sync""time"_ "github.com/go-sql-driver/mysql" )func main() {//开始计时start : time.Now()//链接数据库,用户名…...
刷题之Leetcode704题(超级详细)
704. 二分查找 力扣题目链接(opens new window)https://leetcode.cn/problems/binary-search/ 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标&am…...
leetcode热题100.前k个高频元素
作者:晓宜 🌈🌈🌈 个人简介:互联网大厂Java准入职,阿里云专家博主,csdn后端优质创作者,算法爱好者 ❤️❤️❤️ 你的关注是我前进的动力😊 Problem: 347. 前 K 个高频元…...
LangChain Demo | Agent X ReAct X wikipedia 询问《三体》的主要内容
背景 LangChain学习中,尝试改了一下哈里森和吴恩达课程当中的问题,看看gpt-3.5-turbo在集成了ReAct和wikipedia后,如何回答《三体》的主要内容是什么这个问题,当然,主要是为了回答这问题时LangChain内部发生了什么。所…...
Revit 2025新功能一览~
Hello大家好!我是九哥~ Revit2025已经更新,安装后,简单试了下,还是挺不错的,流畅度啊,新功能啊,看来还是有听取用户意见的,接下来就简单看看都有哪些新功能。 好了,今天的…...
Head First Design Patterns -代理模式
什么是代理模式 代理模式为另一个对象提供替身或者占位符,以便控制客户对对象的访问,管理访问的方式有很多种。例如远程代理、虚拟代理、保护代理等。 远程代理:管理客户和远程对象之间的交互。 虚拟代理:控制访问实例化开销大的对…...
第十三题:天干地支
题目描述 古代中国使用天干地支来记录当前的年份。 天干一共有十个,分别为:甲(jiǎ)、乙(yǐ)、丙(bǐng)、丁(dīng)、戊(w)、己&a…...
8000预算可以购买阿里云服务器配置整理
一个月8000元预算如何选择阿里云服务器配置?八千预算可选的阿里云服务器配置相当高了,这个预算可以购买阿里云企业级独享型云服务器,至少8核以上的配置,这个预算可以支持复杂、高负载或大规模的业务需求。阿里云服务器网整理8000元…...
游戏APP如何提高广告变现收益的同时,保证用户留存率?
APP广告变现对接第三方聚合广告平台主要通过SDK文档对接,一些媒体APP不具备专业运营广告变现的对接能力和资源沉淀,导致APP被封控,设置列入黑名单,借助第三方聚合广告平台进行商业化变现是最佳选择。#APP广告变现# 接入第三方平台…...
Linux ulimit命令教程:如何查看和设置系统资源限制(附实例详解和注意事项)
Linux ulimit命令介绍 ulimit是一个内置的Linux shell命令,它允许查看或限制单个用户可以消耗的系统资源量。在有多个用户和系统性能问题的环境中,限制资源使用是非常有价值的。 Linux ulimit命令适用的Linux版本 ulimit命令在所有主流的Linux发行版中…...
(delphi11最新学习资料) Object Pascal 学习笔记---第8章第5节(封闭类和Final方法)
8.5.2 封闭类和Final方法 如前所述,Java 采用非常动态的方法,默认情况下采用延迟绑定(或虚函数)。因此,Java 语言引入了一些概念,如不能继承的类(封闭类)和不能在派生类中覆盖的方法…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...
篇章二 论坛系统——系统设计
目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...
