当前位置: 首页 > news >正文

机器学习每周挑战——旅游景点数据分析

数据的截图,数据的说明:

# 字段    数据类型
# 城市    string
# 名称    string
# 星级    string
# 评分    float
# 价格    float
# 销量    int
# 省/市/区 string
# 坐标    string
# 简介    string
# 是否免费  bool
# 具体地址  string

拿到数据第一步我们先导入数据,查看一下数据的分布,类型等

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltdata = pd.read_excel("旅游景点.xlsx")
pd.set_option("display.max_columns",100)
# print(data.head())print(data.info())
print(data.isnull().sum())

接下来我们来看具体的问题:

# 问题(先大概分析一下)
# 1、全国景点分布 (我们分析城市的分布即可)
# 2、国民出游分析 (我们可以分析评分,城市,销量之间的关系 )
# 3、景区价格分析 (我们分析价格因素)
# 问题看完之后,我们开始对数据进行预处理
# 由于星级对我们问题的分析帮助很大,所以我们无法用删除,或者众数等方式填充,因此我们用无来填充,将其划分为一个新的类别
data["星级"] = data["星级"].fillna("无")
print(data["星级"].isnull().sum())
至于简介和地址,缺失数据无关紧要,这里我们可以选择用无来填充,也可以用删除来处理,为了不破坏数据的完整性,这里我选择用无来填充
data = data.fillna("无")
# print(data.isnull().sum())
# 这样我们的数据就没有了缺失值
# print(data.info())
# 1、全国景点分布 (我们分析城市的分布即可)
scenic = data['城市'].value_counts().sort_values(ascending=False)
plt.figure()
scenic.plot(kind='bar',stacked=False,colormap='viridis',figsize=(10,6))
plt.title("各个城市景点数量分布图")
plt.xlabel('城市')
plt.ylabel('景点个数')
# plt.show()
# 2、国民出游分析 (我们可以分析评分,城市,销量之间的关系 )
# data['销量'] = data['销量'].astype(int)   这种转换类型的方法,如果有无法转换的值,则无法转换
data['评分'] = pd.to_numeric(data['评分'], errors='coerce')
data['销量'] = pd.to_numeric(data['销量'],errors='coerce')
data['价格'] = pd.to_numeric(data['价格'],errors='coerce')city_sales = data.groupby('城市')['销量'].sum()
city_sales = city_sales.sort_values(ascending=False)plt.figure()
city_sales.plot(kind='bar',stacked=True,colormap='plasma',figsize=(10,6))
plt.title('各个城市景点门票销量')
plt.xlabel('城市')
plt.ylabel('销量')
# 从销量可以看出北京,上海,江苏,四川,陕西,广东的销量较高,因此,我们着重分析这六个地方的景点评分
shanghai = data[data['城市'].str.contains('上海')]
beijing = data[data['城市'].str.contains('北京')]
jiangsu = data[data['城市'].str.contains('江苏')]
sichuan = data[data['城市'].str.contains('四川')]
shanxi = data[data['城市'].str.contains('陕西')]
guangdong = data[data['城市'].str.contains('广东')]shanghai_group = shanghai.groupby('名称')['销量'].sum().reset_index()
beijing_group = beijing.groupby('名称')['销量'].sum().reset_index()
jiangsu_group = jiangsu.groupby('名称')['销量'].sum().reset_index()
sichuan_group = sichuan.groupby('名称')['销量'].sum().reset_index()
shanxi_group = shanxi.groupby('名称')['销量'].sum().reset_index()
guangdong_group = guangdong.groupby('名称')['销量'].sum().reset_index()shanghai_sort = shanghai_group.merge(shanghai[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
beijing_sort = beijing_group.merge(beijing[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
jiangsu_sort = jiangsu_group.merge(jiangsu[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
sichuan_sort = sichuan_group.merge(sichuan[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
shanxi_sort = shanxi_group.merge(shanxi[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)
guangdong_sort = guangdong_group.merge(guangdong[['名称','评分']].drop_duplicates(),on='名称').sort_values(by='销量', ascending=False).head(10)shanghai_sort.reset_index(drop=True,inplace=True)
beijing_sort.reset_index(drop=True,inplace=True)
jiangsu_sort.reset_index(drop=True,inplace=True)
sichuan_sort.reset_index(drop=True,inplace=True)
shanxi_sort.reset_index(drop=True,inplace=True)
guangdong_sort.reset_index(drop=True,inplace=True)plt.figure()
plt.bar(shanghai_sort['名称'],shanghai_sort['销量'])
for i, v in enumerate(shanghai_sort['评分']):plt.text(i, shanghai_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('上海市销量排名前十的景点')
plt.xticks(rotation=45)plt.figure()
plt.bar(beijing_sort['名称'], beijing_sort['销量'])
for i, v in enumerate(beijing_sort['评分']):plt.text(i, beijing_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('北京市销量排名前十的景点')
plt.xticks(rotation=45)plt.figure()
plt.bar(jiangsu_sort['名称'], jiangsu_sort['销量'])
for i, v in enumerate(jiangsu_sort['评分']):plt.text(i, jiangsu_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('江苏省销量排名前十的景点')
plt.xticks(rotation='vertical')plt.figure()
plt.bar(sichuan_sort['名称'], sichuan_sort['销量'])
for i, v in enumerate(sichuan_sort['评分']):plt.text(i, sichuan_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('四川省销量排名前十的景点')
plt.xticks(rotation=45)plt.figure()
plt.bar(shanxi_sort['名称'], shanxi_sort['销量'])
for i, v in enumerate(shanxi_sort['评分']):plt.text(i, shanxi_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('陕西省销量排名前十的景点')
plt.xticks(rotation=45)plt.figure(figsize=(10,6))
plt.bar(guangdong_sort['名称'], guangdong_sort['销量'])
for i, v in enumerate(guangdong_sort['评分']):plt.text(i, guangdong_sort['销量'][i] + 0.2, str(v), ha='center')plt.xlabel('名称')
plt.ylabel('销量')
plt.title('广东省销量排名前十的景点')
plt.xticks(rotation=45)

由此,我们结合这几个分析来回答这几个问题:

相关文章:

机器学习每周挑战——旅游景点数据分析

数据的截图,数据的说明: # 字段 数据类型 # 城市 string # 名称 string # 星级 string # 评分 float # 价格 float # 销量 int # 省/市/区 string # 坐标 string # 简介 string # 是否免费 bool # 具体地址 string拿到数据…...

开发语言漫谈-C语言

个人认为C语言是最伟大的开发语言(没有之一)。C语言开创了高级语言的新时代。比C更低级的是汇编语言,这个东西就是反人类的玩意。之后的语言或多或少都受C语言的影响。更神奇的是直到现在,C语言还有生命力。C语言的发明人丹尼斯里…...

vue3导入excel并解析excel数据渲染到表格中,纯前端实现。

需求 用户将已有的excel上传到系统,并将excel数据同步到页面的表格中进行二次编辑,由于excel数据不是最终数据,只是批量的一个初始模板,后端不需要存储,所以该功能由前端独立完成。 吐槽 系统中文件上传下载预览三部…...

Java常用API之Encoders类解读

写在开头:本文用于作者学习Java常用API 我将官方文档中Encoders类中所有API全测了一遍并打印了结果,日拱一卒,常看常新 在Spark中,Encoders类提供了一些静态方法用于创建不同数据类型的编码器。 首先,我遇到这样一个…...

java中大型医院HIS系统源码 Angular+Nginx+SpringBoot云HIS运维平台源码

java中大型医院HIS系统源码 AngularNginxSpringBoot云HIS运维平台源码 云HIS系统是一款满足基层医院各类业务需要的健康云产品。该产品能帮助基层医院完成日常各类业务,提供病患预约挂号支持、病患问诊、电子病历、开药发药、会员管理、统计查询、医生工作站和护士工…...

windows部署Jenkins并远程部署tomcat

目录 1、Jenkins官网下载Jenkins 2、安装Jenkins 3、修改Home directory 4、插件安装及系统配置 5、Tomcat安装及配置 5.1、修改配置文件,屏蔽以下代码 5.2、新增登录用户 5.3、编码格式修改 5.4、启动tomcat 6、Jenkins远程部署war包 6.1、General配置 6.2、Sourc…...

设计模式|责任链模式(Chain of Responsibility Pattern)

文章目录 结构优点缺点使用责任链的步骤示例有哪些知名框架采用了责任链模式责任链模式和链表有什么关联常见面试题 责任链模式(Chain of Responsibility Pattern)是一种行为设计模式,它允许你创建一个对象链。请求将沿着这个链传递&#xff…...

文件服务器之二:SAMBA服务器

文章目录 什么是SAMBASAMBA的发展历史与名称的由来SAMBA常见的应用 SAMBA服务器基础配置配置共享资源Windows挂载共享Linux挂载共享 什么是SAMBA 下图来自百度百科 SAMBA的发展历史与名称的由来 Samba是一款开源的文件共享软件,它基于SMB(Server Messa…...

20.安全性测试与评估

每年都会涉及;可能会考大题;多记!!! 典型考点:sql注入、xss; 从2个方面记: 1、测试对象的功能、性能; 2、相关设备的工作原理; 如防火墙,要了解防…...

阿里巴巴实习面经

本人bg:浙江大学,计算机研二,本科也是浙大计算机专业的。 在阿里巴巴达摩院实习,算法岗,我是去年拿到的阿里巴巴达摩院的实习offer,这个过程还是比较惊心动魄,所以我称之为惊心动魄版本&#xf…...

javaweb学习(day11-监听器Listener过滤器Filter)

一、监听器Listener 1 Listener介绍 Listener 监听器它是 JavaWeb 的三大组件之一。JavaWeb 的三大组件分别是:Servlet 程 序、Listener 监听器、Filter 过滤器 Listener 是 JavaEE 的规范,就是接口 监听器的作用是,监听某种变化(一般就是对…...

教你快速认识Java中的抽象类和接口

目录 引言 抽象类(Abstract Class) 抽象类的概念 抽象类的图标 抽象类的语法 抽象类的特点 接口(Interface) 接口的概念 接口的图标 接口的语法 接口的特点 接口的使用 接口的意义 抽象类与接口的区别 Object类 结…...

Linux第5课 Linux目录介绍

文章目录 Linux第5课 Linux目录介绍一、打开系统目录二、查看系统目录 Linux第5课 Linux目录介绍 系统目录就是指操作系统的主要文件存放的目录,目录中的文件直接影响到系统是否正常工作,了解这些目录的功能,对使用系统会有很大的帮助。 一…...

GitHub要求2FA?不慌,有它(神锁离线版)帮你!

GitHub宣布,到 2023 年底,所有用户都必须要启用双因素身份验证 (2FA),不能只用密码啦。 说实话,听到这消息小编是非常高兴的。 正如GitHub的首席安全官Mike Hanley所说,软件供应链是从开发者开始的,保护开…...

C语言第四十弹---预处理(下)

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】 预处理 1、#和## 1.1 #运算符 1.2、##运算符 2、命名约定 3、#undef 4、命令行定义 5、条件编译 6、头文件的包含 6.1、头文件被包含的方式 6.1.1、本地…...

SYS-2722音频分析仪SYS2722

181/2461/8938产品概述: Audio Precision 2722 音频分析仪是 Audio Precision 屡获殊荣的 PC 控制音频分析仪的旗舰型号,长期以来一直是音频设备设计和测试的全球公认标准。功能齐全的 SYS-2722 提供了测试转换器技术最新进展所需的无与伦比的失真和噪声…...

下载页面上的视频

引言:有些页面上的视频可以直接右键另存为或者F12检索元素找到视频地址打开后保存,但有些视频页面是转码后的视频,不能直接另存为视频格式,可以参考下本方法 以该页面视频为例:加载中...点击查看详情https://wx.vzan.c…...

静态路由协议实验综合实验

需求: 1、除R5的换回地址已固定外,整个其他所有的网段基于192.168.1.0/24进行合理的IP地址划分。 2、R1-R4每台路由器存在两个环回接口,用于模拟连接PC的网段;地址也在192.168.1.0/24这个网络范围内。 3、R1-R4上不能直接编写到…...

qt MVC软件设计模式

在Qt中使用MVC(Model-View-Controller)软件设计模式可以帮助你将数据模型、用户界面和控制逻辑有效地分离,从而使得代码更清晰,更易于维护和扩展。以下是在Qt中使用MVC模式的一般思路: Model(模型&#xff…...

代码随想录刷题随记15-二叉树回溯

代码随想录刷题随记15-二叉树回溯 110.平衡二叉树 leetcode链接 一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。 求深度和求高度的区别: 求深度可以从上到下去查 所以需要前序遍历(中左右&#xff…...

idea大量爆红问题解决

问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

django filter 统计数量 按属性去重

在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...

面试高频问题

文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...

CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)

漏洞概述 漏洞名称:Apache Kafka Connect JNDI注入导致的远程代码执行漏洞 CVE编号:CVE-2023-25194 CVSS评分:8.8 影响版本:Apache Kafka 2.3.0 - 3.3.2 修复版本:≥ 3.4.0 漏洞类型:反序列化导致的远程代…...

简约商务通用宣传年终总结12套PPT模版分享

IOS风格企业宣传PPT模版,年终工作总结PPT模版,简约精致扁平化商务通用动画PPT模版,素雅商务PPT模版 简约商务通用宣传年终总结12套PPT模版分享:商务通用年终总结类PPT模版https://pan.quark.cn/s/ece1e252d7df...

华为OD机考- 简单的自动曝光/平均像素

import java.util.Arrays; import java.util.Scanner;public class DemoTest4 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint[] arr Array…...

SFTrack:面向警务无人机的自适应多目标跟踪算法——突破小尺度高速运动目标的追踪瓶颈

【导读】 本文针对无人机(UAV)视频中目标尺寸小、运动快导致的多目标跟踪难题,提出一种更简单高效的方法。核心创新在于从低置信度检测启动跟踪(贴合无人机场景特性),并改进传统外观匹配算法以关联此类检测…...